Remote sensing . vol 14 n° 13Paru le : 01/07/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSynergistic use of the SRAL/MWR and SLSTR sensors on board Sentinel-3 for the wet tropospheric correction retrieval / Pedro Aguiar in Remote sensing, vol 14 n° 13 (July-1 2022)
[article]
Titre : Synergistic use of the SRAL/MWR and SLSTR sensors on board Sentinel-3 for the wet tropospheric correction retrieval Type de document : Article/Communication Auteurs : Pedro Aguiar, Auteur ; Telmo Vieira, Auteur ; Clara Lázaro, Auteur ; M. Joanna Fernandes, Auteur Année de publication : 2022 Article en page(s) : n° 3231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] correction troposphérique
[Termes IGN] image Sentinel-3
[Termes IGN] température de surface de la merRésumé : (auteur) The Sentinel-3 satellites are equipped with dual-band Microwave Radiometers (MWR) to derive the wet tropospheric correction (WTC) for satellite altimetry. The deployed MWR lack the 18 GHz channel, which mainly provides information on the surface emissivity. Currently, this information is considered using additional parameters, one of which is the sea surface temperature (SST) extracted from static seasonal tables. Recent studies show that the use of a dynamic SST extracted from Numerical Weather Models (ERA5) improves the WTC retrieval. Given that Sentinel-3 carries on board the Sea and Land Surface Temperature Radiometer (SLSTR), from which SST observations are derived simultaneously with those of the Synthetic Aperture Radar Altimeter and MWR sensors, this study aims to develop a synergistic approach between these sensors for the WTC retrieval over open ocean. Firstly, the SLSTR-derived SSTs are evaluated against the ERA5 model; secondly, their impact on the WTC retrieval is assessed. The results show that using the SST input from SLSTR, instead of ERA5, has no impact on the WTC retrieval, both globally and regionally. Thus, for the WTC retrieval, there seems to be no advantage in having collocated SST and radiometer observations. Additionally, this study reinforces the fact that the use of dynamic SST leads to a significant improvement over the current Sentinel-3 WTC operational algorithms. Numéro de notice : A2022-571 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14133231 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.3390/rs14133231 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101287
in Remote sensing > vol 14 n° 13 (July-1 2022) . - n° 3231[article]Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2 / Fahime Arabi Aliabad in Remote sensing, vol 14 n° 13 (July-1 2022)
[article]
Titre : Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2 Type de document : Article/Communication Auteurs : Fahime Arabi Aliabad, Auteur ; Hamid Reza Ghafarian Malamiri, Auteur ; Saeed Shojaei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 3227 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification orientée objet
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] Google Earth
[Termes IGN] image captée par drone
[Termes IGN] image Sentinel-MSI
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas using images from unmanned aerial vehicles (UAV), Google Earth and Sentinel-2. The accuracy of the land cover map obtained using these images was investigated using pixel-based processing methods (maximum likelihood, minimum distance, Mahalanobis, spectral angle mapping (SAM)) and object-based methods (Bayes, support vector machine (SVM), K-nearest-neighbor (KNN), decision tree, random forest). The use of DSM to increase the accuracy of classification of UAV images and the use of NDVI to identify vegetation in Sentinel-2 images were also investigated. The object-based KNN method was found to have the greatest accuracy in classifying UAV images (kappa coefficient = 0.93), and the use of DSM increased the classification accuracy by 4%. Evaluations of the accuracy of Google Earth images showed that KNN was also the best method for preparing a land cover map using these images (kappa coefficient = 0.83). The KNN and SVM methods showed the highest accuracy in preparing land cover maps using Sentinel-2 images (kappa coefficient = 0.87 and 0.85, respectively). The accuracy of classification was not increased when using NDVI due to the small percentage of vegetation cover in the study area. On examining the advantages and disadvantages of the different methods, a novel method for identifying new rural constructions was devised. This method uses only one UAV imaging per year to determine the exact position of urban areas with no constructions and then examines spectral changes in related Sentinel-2 pixels that might indicate new constructions in these areas. On-site observations confirmed the accuracy of this method. Numéro de notice : A2022-572 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.3390/rs14133227 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.3390/rs14133227 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101288
in Remote sensing > vol 14 n° 13 (July-1 2022) . - n° 3227[article]Fusing Sentinel-2 and Landsat 8 satellite images using a model-based method / Jakob Sigurdsson in Remote sensing, vol 14 n° 13 (July-1 2022)
[article]
Titre : Fusing Sentinel-2 and Landsat 8 satellite images using a model-based method Type de document : Article/Communication Auteurs : Jakob Sigurdsson, Auteur ; Sveinn E. Armannsson, Auteur ; Magnus Orn Ulfarsson, Auteur ; Johannes R. Sveinsson, Auteur Année de publication : 2022 Article en page(s) : n° 3224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] limite de résolution géométrique
[Termes IGN] modèle géométrique de prise de vueRésumé : (auteur) The Copernicus Sentinel-2 (S2) constellation comprises of two satellites in a sun-synchronous orbit. The S2 sensors have three spatial resolutions: 10, 20, and 60 m. The Landsat 8 (L8) satellite has sensors that provide seasonal coverage at spatial resolutions of 15, 30, and 60 m. Many remote sensing applications require the spatial resolutions of all data to be at the highest resolution possible, i.e., 10 m for S2. To address this demand, researchers have proposed various methods that exploit the spectral and spatial correlations within multispectral data to sharpen the S2 bands to 10 m. In this study, we combined S2 and L8 data. An S2 sharpening method called Sentinel-2 Sharpening (S2Sharp) was modified to include the 30 m and 15 m spectral bands from L8 and to sharpen all bands (S2 and L8) to the highest resolution of the data, which was 10 m. The method was evaluated using both real and simulated data. Numéro de notice : A2022-573 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : https://doi.org/10.3390/rs14133224 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.3390/rs14133224 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101289
in Remote sensing > vol 14 n° 13 (July-1 2022) . - n° 3224[article]