[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierRisk assessment and prediction of forest health for effective geo-environmental planning and monitoring of mining affected forest area in hilltop region / Narayan Kayet in Geocarto international, vol 37 n° 11 ([15/06/2022])
[article]
Titre : Risk assessment and prediction of forest health for effective geo-environmental planning and monitoring of mining affected forest area in hilltop region Type de document : Article/Communication Auteurs : Narayan Kayet, Auteur ; Khanindra Pathak, Auteur ; Abhisek Chakrabarty, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3091 - 3115 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse multicritère
[Termes IGN] impact sur l'environnement
[Termes IGN] mine
[Termes IGN] prévention des risques
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] santé des forêtsRésumé : (auteur) This paper focuses on forest health risk (FHR) assessment and prediction in the mining-affected forest region using AHP model based on multi-criteria analysis in a GIS platform. We considered a total twenty-eight (twenty two present and six predicted) causative parameters including climate, natural or geomorphological, forestry, topographical, environmental, and anthropogenic. The assessment results of FHR show that of the total existing forest area, 2.85% area under very high, 13.63% high, 31.98% moderate, 32.68% low, and 18.87% are under very low categories. According to the assessment and prediction FHR results, the very high-risk classes were found at mines surrounding forest compartments. The sensitivity analysis showed that some factors were more sensitive to FHR. The correlation results showed a negative relationship between FHR and distance from mines and foliar dust concentration. This work will provide a basic guideline for effective planning and management in forestry studies for the mining-affected region. Numéro de notice : A2022-585 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1849413 Date de publication en ligne : 08/12/2020 En ligne : https://doi.org/10.1080/10106049.2020.1849413 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101358
in Geocarto international > vol 37 n° 11 [15/06/2022] . - pp 3091 - 3115[article]Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique / Syaza Rozali in Geocarto international, vol 37 n° 11 ([15/06/2022])
[article]
Titre : Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique Type de document : Article/Communication Auteurs : Syaza Rozali, Auteur ; Zulkiflee Abd Latif, Auteur ; Nor Aizam Adnan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3247 - 3264 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] MalaisieRésumé : (auteur) The study involves an object-based segmentation method to extract feature changes in tropical rainforest cover using Landsat image and airborne LiDAR (ALS). Disturbance event that are represents the changes are examined by the classification of multisensor data; that is a highly accurate ALS with different resolutions of multispectral Landsat image. Disturbance Index (DI) derived from Tasseled Cap Transformation, Normalized Difference Vegetation Index (NDVI), and the ALS height are the variables for object-based segmentation process. The classification is categorized into two classes; disturbed and non-disturbed forest cover using Nearest Neighbor (NN), Random Forest (RF) and Support Vector Machine (SVM). The overall accuracy ranging from 88% to 96% and kappa ranging from 0.79 to 0.91. Mcnemar’s test p-value ( Numéro de notice : A2022-586 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1852610 Date de publication en ligne : 27/12/2020 En ligne : https://doi.org/10.1080/10106049.2020.1852610 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101360
in Geocarto international > vol 37 n° 11 [15/06/2022] . - pp 3247 - 3264[article]