Marine geodesy . vol 45 n° 5Paru le : 01/09/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierAnalytical method for high-precision seabed surface modelling combining B-spline functions and Fourier series / Tyler Susa in Marine geodesy, vol 45 n° 5 (September 2022)
[article]
Titre : Analytical method for high-precision seabed surface modelling combining B-spline functions and Fourier series Type de document : Article/Communication Auteurs : Tyler Susa, Auteur Année de publication : 2022 Article en page(s) : pp 435 - 461 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bathymétrie
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Extreme Gradient Machine
[Termes IGN] fond marin
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation
[Termes IGN] Porto Rico
[Termes IGN] profondeur
[Termes IGN] réflectanceRésumé : (auteur) Accurate charting of nearshore bathymetry is critical to the safe and dependable use of coastal waterways frequented by the trading, fishing, tourism, and ocean energy industries. The accessibility of satellite imagery and the availability of various satellite-derived bathymetry (SDB) techniques have provided a cost-effective alternative to traditional in-situ bathymetric surveys. Furthermore, improved algorithms and the advancement of machine learning models have provided opportunity for higher quality bathymetric derivations. However, to date the relative accuracy and performance between traditional physics-based techniques, improved physics-based methods, and machine learning ensemble models have not been adequately quantified. In this study, nearshore bathymetry is derived from Sentinel-2 satellite imagery near La Parguera, Puerto Rico utilizing a traditional band-ratio algorithm, a band-ratio switching method, a random forest machine learning model, and the XGBoost machine learning model. The machine learning models returned comparable results and were markedly more accurate relative to other techniques; however, both machine learning models required an extensive training dataset. All models were constrained by environmental influences and image spatial resolution, which were assessed to be the limiting factors for routine use of satellite-derived bathymetry as a reliable method for hydrographic surveying. Numéro de notice : A2022-609 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01490419.2022.2064572 Date de publication en ligne : 04/05/2022 En ligne : https://doi.org/10.1080/01490419.2022.2064572 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101392
in Marine geodesy > vol 45 n° 5 (September 2022) . - pp 435 - 461[article]