[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])
[article]
Titre : A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway Type de document : Article/Communication Auteurs : Reza Sanayeia, Auteur ; Alireza Vafaeinejad, Auteur ; Jalal Karami, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4141 - 4157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] accident de la route
[Termes IGN] autocorrélation
[Termes IGN] autoroute
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographique
[Termes IGN] Téhéran
[Termes IGN] transformation en ondelettesRésumé : (auteur) The aim of this study is to develop a model to predict temporal daily collision by integrating of Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms. As a case study, the integrated model was tested on 1097 daily traffic collisions data of Karaj-Qazvin freeway from 2009 to 2013 and the results were compared with the conventional ANN prediction model. In this method, initially, the raw collision data were analyzed, normalized, and classified via Geographical Information System (GIS). Partial Autocorrelation Function (PACF) was also utilized to evaluate the temporal autocorrelation for consecutive existing daily data. The results of this study showed that the proposed integrated DWT-ANN method provided higher predictive accuracy in daily traffic collision than ANN model by increasing coefficient of determination (R2) from 0.66 to 0.82. Numéro de notice : A2022-650 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1871669 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.1080/10106049.2021.1871669 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101472
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4141 - 4157[article]Segmentation and sampling method for complex polyline generalization based on a generative adversarial network / Jiawei Du in Geocarto international, vol 37 n° 14 ([20/07/2022])
[article]
Titre : Segmentation and sampling method for complex polyline generalization based on a generative adversarial network Type de document : Article/Communication Auteurs : Jiawei Du ; Fang Wu, Auteur ; Ruixing Xing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4158 - 4180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] échantillonnage de données
[Termes IGN] implémentation (informatique)
[Termes IGN] polyligne
[Termes IGN] rastérisation
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation
[Vedettes matières IGN] GénéralisationRésumé : (auteur) This paper focuses on learning complex polyline generalization. First, the requirements for sampled images to ensure the effective learning of complex polyline generalization are analysed. To meet these requirements, new methods for segmenting complex polylines and sampling images are proposed. Second, using the proposed segmentation and sampling method, a use case for the learning of complex polyline generalization using the generative adversarial network model, Pix2Pix, is developed. Third, this use case is applied experimentally for the complex generalization of coastline data from a scale of 1:50,000 to 1:250,000. Additionally, contrast experiments are conducted to compare the proposed segmentation and sampling method with object-based and traditional fixed-size methods. Experimental results show that the images generated using the proposed method are superior to the other two methods in the learning and application of complex polyline generalization. The results generalized for the developed use case are globally reasonable and suitably accurate. Numéro de notice : A2022-651 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1878288 Date de publication en ligne : 09/02/2021 En ligne : https://doi.org/10.1080/10106049.2021.1878288 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101473
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4158 - 4180[article]