Paru le : 01/09/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2022091 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierExploring multi-modal evacuation strategies for a landlocked population using large-scale agent-based simulations / Kevin Chapuis in International journal of geographical information science IJGIS, vol 36 n° 9 (September 2022)
[article]
Titre : Exploring multi-modal evacuation strategies for a landlocked population using large-scale agent-based simulations Type de document : Article/Communication Auteurs : Kevin Chapuis, Auteur ; Pham Minh-Duc, Auteur ; Arthur Brugière, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1741 - 1783 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] gestion de crise
[Termes IGN] gestion des risques
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] prévention des risques
[Termes IGN] secours d'urgence
[Termes IGN] trafic routier
[Termes IGN] Viet Nam
[Termes IGN] zone urbaineRésumé : (auteur) At a time when the impacts of climate change and increasing urbanization are making risk management more complex, there is an urgent need for tools to better support risk managers. One approach increasingly used in crisis management is preventive mass evacuation. However, to implement and evaluate the effectiveness of such strategy can be complex, especially in large urban areas. Modeling approaches, and in particular agent-based models, are used to support implementation and to explore a large range of evacuation strategies, which is impossible through drills. One major limitation with simulation of traffic based on individual mobility models is their capacity to reproduce a context of mixed traffic. In this paper, we propose an agent-based model with the capacity to overcome this limitation. We simulated and compared different spatio-temporal evacuation strategies in the flood-prone landlocked area of the Phúc Xá district in Hanoi. We demonstrate that the interaction between distribution of transport modalities and evacuation strategies greatly impact evacuation outcomes. More precisely, we identified staged strategies based on the proximity to exit points that make it possible to reduce time spent on road and overall evacuation time. In addition, we simulated improved evacuation outcomes through selected modification of the road network. Numéro de notice : A2022-644 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2069774 Date de publication en ligne : 16/05/2022 En ligne : https://doi.org/10.1080/13658816.2022.2069774 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101455
in International journal of geographical information science IJGIS > vol 36 n° 9 (September 2022) . - pp 1741 - 1783[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022091 SL Revue Centre de documentation Revues en salle Disponible A multi-source spatio-temporal data cube for large-scale geospatial analysis / Fan Gao in International journal of geographical information science IJGIS, vol 36 n° 9 (September 2022)
[article]
Titre : A multi-source spatio-temporal data cube for large-scale geospatial analysis Type de document : Article/Communication Auteurs : Fan Gao, Auteur ; Peng Yue, Auteur ; Zhipeng Cao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1853 - 1884 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cube espace-temps
[Termes IGN] cyberinfrastructure
[Termes IGN] données spatiotemporelles
[Termes IGN] Géocube
[Termes IGN] hypercube
[Termes IGN] informatique en nuage
[Termes IGN] intelligence artificielle
[Termes IGN] observation de la TerreRésumé : (auteur) Data management and analysis are challenging with big Earth observation (EO) data. Expanding upon the rising promises of data cubes for analysis-ready big EO data, we propose a new geospatial infrastructure layered over a data cube to facilitate big EO data management and analysis. Compared to previous work on data cubes, the proposed infrastructure, GeoCube, extends the capacity of data cubes to multi-source big vector and raster data. GeoCube is developed in terms of three major efforts: formalize cube dimensions for multi-source geospatial data, process geospatial data query along these dimensions, and organize cube data for high-performance geoprocessing. This strategy improves EO data cube management and keeps connections with the business intelligence cube, which provides supplementary information for EO data cube processing. The paper highlights the major efforts and key research contributions to online analytical processing for dimension formalization, distributed cube objects for tiles, and artificial intelligence enabled prediction of computational intensity for data cube processing. Case studies with data from Landsat, Gaofen, and OpenStreetMap demonstrate the capabilities and applicability of the proposed infrastructure. Numéro de notice : A2022-643 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2087222 Date de publication en ligne : 14/06/2022 En ligne : https://doi.org/10.1080/13658816.2022.2087222 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101458
in International journal of geographical information science IJGIS > vol 36 n° 9 (September 2022) . - pp 1853 - 1884[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022091 SL Revue Centre de documentation Revues en salle Disponible