[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers / Qasim Khan in Geocarto international, vol 37 n° 20 ([20/09/2022])
[article]
Titre : A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers Type de document : Article/Communication Auteurs : Qasim Khan, Auteur ; Muhammad Usman Liaqat, Auteur ; Mohamed Mostafa Mohamed, Auteur Année de publication : 2022 Article en page(s) : pp 5832 - 5850 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] aquifère
[Termes IGN] ArcGIS
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] eau souterraine
[Termes IGN] Emirats Arabes Unis
[Termes IGN] estimation par noyau
[Termes IGN] nitrate
[Termes IGN] vulnérabilitéRésumé : (auteur) Groundwater is more prone to contamination due to its extensive usage. Different methods are applied to study vulnerability of groundwater including widely used DRASTIC method, SI and GOD. This study proposes a novel method of mapping groundwater vulnerability using machine learning algorithms. In this study, point extraction method was used to extract point values from a grid of 646 points of seven raster layer in the Al Khatim study area of United Arab Emirates. These extracted values were classified based on nitrate concentration threshold of 50 mg/L into two classes. Machine learning models were developed, using depth to water (D), recharge (R), aquifer media (A), soil media (S), topography (T), vadose zone (I) and hydraulic conductivity (C), on the basis of nitrate class. Classified ‘groundwater vulnerability class values’ were trained using 10-fold cross-validation, using four machine learning models which were Random Forest, Support Vector Machine, Naïve Bayes and C4. 5. Accuracy showed the model developed by Random Forest gained highest accuracy of 93%. Four groundwater vulnerability maps were developed from machine learning classifiers and was compared with base method of DRASTIC index. The efficiency, accuracy and validity of machine learning based models were evaluated based on Receiver Operating Characteristics (ROC) curve and Precision-Recall curve (PRC). The results proved that machine learning is an efficient tool to access, analyze and map groundwater vulnerability. Numéro de notice : A2022-716 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1923833 Date de publication en ligne : 01/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1923833 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101641
in Geocarto international > vol 37 n° 20 [20/09/2022] . - pp 5832 - 5850[article]Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska / Jiang Chen in Geocarto international, vol 37 n° 20 ([20/09/2022])
[article]
Titre : Comparing Landsat-8 and Sentinel-2 top of atmosphere and surface reflectance in high latitude regions: case study in Alaska Type de document : Article/Communication Auteurs : Jiang Chen, Auteur ; Weining Zhu, Auteur Année de publication : 2022 Article en page(s) : pp 6052 - 6071 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse comparative
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat-8
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] latitude
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] observation de la Terre
[Termes IGN] réflectance de surfaceRésumé : (auteur) Combining Landsat-8 and Sentinel-2 images is an effective approach to obtain high spatiotemporal resolution data for Earth observation and remote sensing modeling. The differences between Landsat-8 and Sentinel-2 products, such as the reflectance at the top of atmosphere (TOA) and land surface, should be compared and evaluated to make sure they are spectrally consistent. Their consistency has been evaluated and the differences have been empirically corrected at mid-low latitudes, but in high latitude areas with a higher solar zenith angle (SZA), the similar work has not been explored. In this study, Landsat-8 and Sentinel-2 TOA and surface reflectance in Alaska as well as some surface parameters, such as the normalized difference vegetation index (NDVI) and normalized difference snow index (NDSI), were compared using the massive data distributed on Google earth engine (GEE) online platform, and their consistency was evaluated and the uncertainty was analyzed. Some empirical models were suggested to convert Sentinel-2 products to be consistent with Landsat-8 products at all bands. The results show that TOA reflectance is more consistent than surface reflectance in Alaska. This study suggests that the consistency between Landsat-8 and Sentinel-2 at high latitudes should be paid more attention because their consistency is lower than that at mid-low latitudes. Numéro de notice : A2022-717 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1924295 Date de publication en ligne : 17/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1924295 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101642
in Geocarto international > vol 37 n° 20 [20/09/2022] . - pp 6052 - 6071[article]