[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas / Hossein Pourazar in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas Type de document : Article/Communication Auteurs : Hossein Pourazar, Auteur ; Farhad Samadzadegan, Auteur ; Farzaneh Dadrass Javan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6695 - 6712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotoplan numérique
[Termes IGN] zone urbaineRésumé : (auteur) In this paper, a deep convolutional neural network (CNN) is developed to classify the Unmanned Aerial Vehicle (UAV) derived multispectral imagery and normalized digital surface model (DSM) data in urban areas. For this purpose, a multi-input deep CNN (MIDCNN) architecture is designed using 11 parallel CNNs; 10 deep CNNs to extract the features from all possible triple combinations of spectral bands as well as one deep CNN dedicated to the normalized DSM data. The proposed method is compared with the traditional single-input (SI) and double-input (DI) deep CNN designations and random forest (RF) classifier, and evaluated using two independent test datasets. The results indicate that increasing the CNN layers parallelly augmented the classifier’s generalization and reduced overfitting risk. The overall accuracy and kappa value of the proposed method are 95% and 0.93, respectively, for the first test dataset, and 96% and 0.94, respectively, for the second test data set. Numéro de notice : A2022-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959655 Date de publication en ligne : 04/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959655 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101741
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6695 - 6712[article]Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India / Rabin Chakrabortty in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India Type de document : Article/Communication Auteurs : Rabin Chakrabortty, Auteur ; Subodh Chandra Pal, Auteur ; Fatemeh Rezaie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6713 - 6735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] mousson
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] réseau neuronal profond
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Flood-susceptibility mapping is an important component of flood risk management to control the effects of natural hazards and prevention of injury. We used a remote-sensing and geographic information system (GIS) platform and a machine-learning model to develop a flood susceptibility map of Kangsabati River Basin, India where flash flood is common due to monsoon precipitation with short duration and high intensity. And in this subtropical region, climate change’s impact helps to influence the distribution of rainfall and temperature variation. We tested three models-particle swarm optimization (PSO), an artificial neural network (ANN), and a deep-leaning neural network (DLNN)-and prepared a final flood susceptibility map to classify flood-prone regions in the study area. Environmental, topographical, hydrological, and geological conditions were included in the models, and the final model was selected based on the relations between potentiality of causative factors and flood risk based on multi-collinearity analysis. The model results were validated and evaluated using the area under receiver operating characteristic (ROC) curve (AUC), which is an indicator of the current state of the environment and a value >0.95 implies a greater risk of flash floods. The AUC values for ANN, DLNN, and PSO for training datasets were 0.914, 0.920, and 0.942, respectively. Among these three models, PSO showed the best performance with an AUC value of 0.942. The PSO approach is applicable for flood susceptibility mapping of the eastern part of India, a subtropical region, to allow flood mitigation and help to improve risk management in this region. Numéro de notice : A2022-750 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1953618 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1953618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101742
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6713 - 6735[article]GIS and MCDMA prioritization based modeling for sub-watershed in Bastora river basin / Raid Mahmood Faisal in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : GIS and MCDMA prioritization based modeling for sub-watershed in Bastora river basin Type de document : Article/Communication Auteurs : Raid Mahmood Faisal, Auteur Année de publication : 2022 Article en page(s) : pp 6826 - 6847 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse multicritère
[Termes IGN] ArcGIS
[Termes IGN] érosion
[Termes IGN] géomorphométrie
[Termes IGN] Iraq
[Termes IGN] modèle RUSLE
[Termes IGN] processus de hiérarchisation analytiqueRésumé : (auteur) This study examines the watersheds in the Bastora river basin and builds a geographic model within ARC GIS software. The work was divided into three phases. The first phase was to obtain the results of 14 morphometric parameters to determine priorities, by using AHP model to extract the relative weights of the parameters. Then, these weights are adopted in building (SDI, TOPSIS and SAW) models to determine levels of priorities. The outputs were classified into five categories according to the degree of their susceptibility to erosion. The second phase includes creating another model to provide necessary data and tools for building the RUSLE model. The final phase validates of pairs of models (TOPSIS-RUSLE), (SDI-RUSLE), and (SAW-RUSLE) using least squares tool for comparison between the results. The results indicate a highly statistically significant relationship among all the previous pairs of models with clear preference recorded for (TOPSIS-RUSLE) models relationship. Numéro de notice : A2022-751 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1950848 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1950848 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101743
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6826 - 6847[article]Comparison of change and static state as the dependent variable for modeling urban growth / Yongjiu Feng in Geocarto international, vol 37 n° 23 ([15/10/2022])
[article]
Titre : Comparison of change and static state as the dependent variable for modeling urban growth Type de document : Article/Communication Auteurs : Yongjiu Feng, Auteur ; Rong Wang, Auteur ; Xiaohua Tong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6975 - 6998 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] auto-régression
[Termes IGN] automate cellulaire
[Termes IGN] Chine
[Termes IGN] croissance urbaine
[Termes IGN] distribution spatiale
[Termes IGN] utilisation du sol
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) To examine the effects of historical land-use change and static land-use state on the modeling, we established three cellular automata (CA) models using the spatial autoregressive model (SAR). The models are CASAR-Cha based on the change data, CASAR-Sta based on the start-state data, and CASAR-End based on the end-state data. The models that considered five different neighborhood sizes (from 3 × 3 to 11 × 11) were applied to simulate the urban growth of Jiaxing, China from 2008 to 2018, and predict the urban scenario to the year 2048. All three models can accurately reproduce the urban growth from 2008 to 2018, and the CASAR-End model performed best in calibration and validation. The differences in historical land data did affect the spatial distribution of the simulated urban patterns. The neighborhood size has a significant impact on the model's allocation ability, yet the appropriate size depends on the unique landscape context being studied. Numéro de notice : A2022-752 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959657 Date de publication en ligne : 02/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959657 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101744
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6975 - 6998[article]