Descripteur
Termes IGN > géomatique > base de données localisées > attribut > attribut non spatial
attribut non spatialVoir aussi |
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Convex hull: another perspective about model predictions and map derivatives from remote sensing data / Jean-Pierre Renaud (2021)
Titre : Convex hull: another perspective about model predictions and map derivatives from remote sensing data Type de document : Article/Communication Auteurs : Jean-Pierre Renaud , Auteur ; Ankit Sagar , Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Christine Deleuze, Auteur ; Cédric Vega , Auteur Editeur : Vienne [Autriche] : Technische Universität Wien Année de publication : 2021 Collection : Geowissenschaftliche Mitteilungen, ISSN 1811-8380 num. 104 Projets : ARBRE / AgroParisTech (2007 -) Conférence : SilviLaser 2021, 17th conference on Lidar Applications for Assessing and Managing Forest Ecosystems 28/09/2021 30/09/2021 Vienne + online Autriche open access proceedings Projets : DEEPSURF / Pironon, Jacques Importance : pp 71 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut non spatial
[Termes IGN] convexité
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] erreur systématique
[Termes IGN] modèle de simulation
[Termes IGN] modèle linéaireMots-clés libres : enveloppe convexe Résumé : (auteur) [introduction] In forest inventories as well as in the process of building models, obtaining an efficient sample is a central goal to reach precise estimates of forest attributes (Hawbaker et al. 2009, Frazer et al. 2011, Grafström et al. 2014, Saarela et al. 2015, Bouvier et al. 2019). In a model-based approach, a plots sample must cover adequately the variability of the considered forest attributes in order to minimise prediction error. Different strategies have been proposed to efficiently distribute the field sampling units in the auxiliary space of the remote sensing data (e.g. Hawbaker et al. 2009, Grafström et al. 2014). Some authors have proposed to stratify Airborne Laser Scanning data (ALS) to optimize sampling (Hawbaker et al. 2009, Frazer et al. 2011), and Maltamo et al. (2011) compared different field plot selection strategies in order to optimise models precision. Interestingly, White et al. (2013) applied convex hull approach to show uncovered forest structures by the field calibration sampling units, since large prediction errors could be associated with model extrapolations, resulting in potentially biased map derivatives. In this research, we use convex hull to identify the proportion of extrapolated pixels, computed their distance to the calibration domain and estimated bias associated to the linear model predictions on an ALS case study. Numéro de notice : C2021-030 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.34726/wim.1919 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.34726/wim.1919 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98997 Visualization of 3D property data and assessment of the impact of rendering attributes / Stefan Seipel in Journal of Geovisualization and Spatial Analysis, vol 4 n° 2 (December 2020)
[article]
Titre : Visualization of 3D property data and assessment of the impact of rendering attributes Type de document : Article/Communication Auteurs : Stefan Seipel, Auteur ; Martin Andrée, Auteur ; Karolina Larsson, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] attribut non spatial
[Termes IGN] cadastre 3D
[Termes IGN] cadastre étranger
[Termes IGN] classification barycentrique
[Termes IGN] couleur (rédaction cartographique)
[Termes IGN] mesure de similitude
[Termes IGN] propriété foncière
[Termes IGN] rédaction cartographique
[Termes IGN] rendu (géovisualisation)
[Termes IGN] saillance
[Termes IGN] scène 3D
[Termes IGN] Stockholm (Suède)
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Visualizations of 3D cadastral information incorporating both intrinsically spatial and non-spatial information are examined here. The design of a visualization prototype is linked to real-case 3D property information. In an interview with domain experts, the functional and visual features of the prototype are assessed. The choice of rendering attributes was identified as an important aspect for further analysis. A computational approach to systematic assessment of the consequences of different graphical design choices is proposed. This approach incorporates a colour similarity metric, visual saliency maps, and k-nearest-neighbour (kNN) classification to estimate risks of confusing or overlooking relevant elements in a visualization. The results indicate that transparency is not an independent visual variable, as it affects the apparent colour of 3D objects and makes them inherently more difficult to distinguish. Transparency also influences visual saliency of objects in a scene. The proposed analytic approach was useful for visualization design and revealed that the conscious use of graphical attributes, like combinations of colour, transparency, and line styles, can improve saliency of objects in a 3D scene. Numéro de notice : A2020-796 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-020-00063-6 Date de publication en ligne : 26/10/2020 En ligne : https://doi.org/10.1007/s41651-020-00063-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96612
in Journal of Geovisualization and Spatial Analysis > vol 4 n° 2 (December 2020) . - n° 23[article]