Earth and space science / American Geophysical Union . vol 9 n° 10Paru le : 01/10/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierInvestigating the efficiency of deep learning methods in estimating GPS geodetic velocity / Omid Memarian Sorkhabi in Earth and space science, vol 9 n° 10 (October 2022)
[article]
Titre : Investigating the efficiency of deep learning methods in estimating GPS geodetic velocity Type de document : Article/Communication Auteurs : Omid Memarian Sorkhabi, Auteur ; Muhammed Milani, Auteur ; Seyed Mehdi Seyed Alizadeh, Auteur Année de publication : 2022 Article en page(s) : 8 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] apprentissage profond
[Termes IGN] champ de vitesse
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] géodynamique
[Termes IGN] point géodésique
[Termes IGN] positionnement par GPS
[Termes IGN] station GPS
[Termes IGN] tectoniqueRésumé : (auteur) Geodetic velocity (GV) has many applications in tectonic motion determination and geodynamic studies. Due to the high cost of global navigation satellite system stations, deep learning methods have been investigated to estimate GV. In this research, four methods of convolutional neural networks (CNNs), deep Boltzmann machines, deep belief net and recurrent neural networks have been applied. The GV of 42 global positioning system stations is entered the deep learning methods. The outputs of the four methods have successfully passed the normality test. The results show that the CNN method has a lower goodness of fit and root mean square error (RMSE). CNN can learn different dependencies and extract features. Numéro de notice : A2022-757 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1029/2021EA002202 Date de publication en ligne : 22/09/2022 En ligne : https://doi.org/10.1029/2021EA002202 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101763
in Earth and space science > vol 9 n° 10 (October 2022) . - 8 p.[article]