Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > botanique systématique > Tracheophyta > Spermatophytina > Gymnosperme > Ginkgoaceae > Ginkgo biloba
Ginkgo biloba |
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations / Kai Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)
[article]
Titre : An advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations Type de document : Article/Communication Auteurs : Kai Zhou, Auteur ; Lin Cao, Auteur ; Shiyun Yin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande spectrale
[Termes IGN] coefficient de corrélation
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] feuille (végétation)
[Termes IGN] Ginkgo biloba
[Termes IGN] image à haute résolution
[Termes IGN] indice foliaire
[Termes IGN] Kiangsou (Chine)
[Termes IGN] réflectance végétaleRésumé : (auteur) As a key phenolic pigment concentrated in the surface tissues of leaves, flavonoids (Flav) are the major bioactive ingredients in Ginkgo leaf extracts. Flav are also marked natural antioxidants and significant indicators of biotic and abiotic stresses, critical for determining cultivation quality and enhancing Flav yield. In particular, area-based Flav (Flavarea) is related to the shortwave-blue light interaction within leaves per unit leaf area, whereas mass-based Flav (Flavmass) is useful for the quantitative assessment of Flav yield. In order to accurately estimate the contents of Flavarea and Flavmass in leaves of Ginkgo plantations, in this study, we developed an advanced bidirectional reflectance factor (BRF) spectra-based approach by reducing the effects of specular reflection and enhancing the absorption signals of Flav (in the shortwave-blue region of spectrum), using a suite of new spectral indices (SIs) (i.e., flavonoid index (FI), modified flavonoid index (mFI) and double difference index (DD)) calculated from the leaf clip equipped spectrometers-collected data. The results demonstrated that most of the SIs derived from the developed BRF spectra-based approach obtained relatively high performance for Flav estimation by alleviating adverse effects of specular reflection to different extents (CV-R2 = 0.60–0.76). In specific, DDnir434,421 selected from DD-type indices performed (CV-R2 = 0.76 for Flavarea; CV-R2 = 0.69 for Flavmass) better than other indices. These findings represent marked potentials of the developed BRF spectra-based approach for non-destructively estimating leaf Flav content, as well as improving the understanding of the mechanisms of specular effects on Flav estimations in leaves of Ginkgo plantations. Numéro de notice : A2022-744 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.020 Date de publication en ligne : 09/09/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101727
in ISPRS Journal of photogrammetry and remote sensing > vol 193 (November 2022) . - pp 1 - 16[article]Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations / Kun Liu in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
[article]
Titre : Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations Type de document : Article/Communication Auteurs : Kun Liu, Auteur ; Xin Shen, Auteur ; Lin Cao, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 465 - 482 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de sensibilité
[Termes IGN] biomasse aérienne
[Termes IGN] canopée
[Termes IGN] Chine
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] drone
[Termes IGN] échelle des données
[Termes IGN] erreur moyenne quadratique
[Termes IGN] Ginkgo biloba
[Termes IGN] plantation forestière
[Termes IGN] semis de points
[Termes IGN] structure de la végétationRésumé : (auteur) Estimating forest structural attributes in planted forests is crucial for sustainably management of forests and helps to understand the contributions of forests to global carbon storage. The Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) has become a promising technology and attempts to be used for forest management, due to its capacity to provide highly accurate estimations of three-dimensional (3D) forest structural information with a lower cost, higher flexibility and finer resolution than airborne LiDAR. In this study, the effectiveness of plot-level metrics (i.e., distributional, canopy volume and Weibull-fitted metrics) and individual-tree-summarized metrics (i.e., maximum, minimum and mean height of trees and the number of trees from the individual tree detection (ITD) results) derived from UAV-LiDAR point clouds were assessed, then these metrics were used to fit estimation models of six forest structural attributes by parametric (i.e., partial least squares (PLS)) and non-parametric (i.e., k-Nearest Neighbors (k-NN) and Random Forest (RF)) approaches, within a Ginkgo plantation in east China. In addition, we assessed the effects of UAV-LiDAR point cloud density on the derived metrics and individual tree segmentation results, and evaluated the correlations of these metrics with aboveground biomass (AGB) by a sensitivity analysis. The results showed that, in general, models based on both plot-level and individual-tree-summarized metrics (CV-R2 = 0.66–0.97, rRMSE = 2.83–23.35%) performed better than models based on the plot-level metrics only (CV-R2 = 0.62–0.97, rRMSE = 3.81–27.64%). PLS had a relatively high prediction accuracy for Lorey’s mean height (CV-R2 = 0.97, rRMSE = 2.83%), whereas k-NN performed well for predicting volume (CV-R2 = 0.94, rRMSE = 8.95%) and AGB (CV-R2 = 0.95, rRMSE = 8.81%). For the point cloud density sensitivity analysis, the canopy volume metrics showed a higher dependence on point cloud density than other metrics. ITD results showed a relatively high accuracy (F1-score > 74.93%) when the point cloud density was higher than 10% (16 pts·m−2). The correlations between AGB and the metrics of height percentiles, lower height level of canopy return densities and canopy cover appeared stable across different point cloud densities when the point cloud density was reduced from 50% (80 pts·m−2) to 5% (8 pts·m−2). Numéro de notice : A2018-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.11.001 Date de publication en ligne : 08/11/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.11.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91570
in ISPRS Journal of photogrammetry and remote sensing > vol 146 (December 2018) . - pp 465 - 482[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018131 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018133 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018132 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt