Remote sensing . vol 14 n° 19Paru le : 01/10/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierDSNUNet: An improved forest change detection network by combining Sentinel-1 and Sentinel-2 images / Jiawei Jiang in Remote sensing, vol 14 n° 19 (October-1 2022)
[article]
Titre : DSNUNet: An improved forest change detection network by combining Sentinel-1 and Sentinel-2 images Type de document : Article/Communication Auteurs : Jiawei Jiang, Auteur ; Yuanjun Xing, Auteur ; Wei Wei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5046 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] détection de changement
[Termes IGN] gestion forestière
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] réseau neuronal siamois
[Termes IGN] ressources forestièresRésumé : (auteur) The use of remote sensing images to detect forest changes is of great significance for forest resource management. With the development and implementation of deep learning algorithms in change detection, a large number of models have been designed to detect changes in multi-phase remote sensing images. Although synthetic aperture radar (SAR) data have strong potential for application in forest change detection tasks, most existing deep learning-based models have been designed for optical imagery. Therefore, to effectively combine optical and SAR data in forest change detection, this paper proposes a double Siamese branch-based change detection network called DSNUNet. DSNUNet uses two sets of feature branches to extract features from dual-phase optical and SAR images and employs shared weights to combine features into groups. In the proposed DSNUNet, different feature extraction branch widths were used to compensate for a difference in the amount of information between optical and SAR images. The proposed DSNUNet was validated by experiments on the manually annotated forest change detection dataset. According to the obtained results, the proposed method outperformed other change detection methods, achieving an F1-score of 76.40%. In addition, different combinations of width between feature extraction branches were analyzed in this study. The results revealed an optimal performance of the model at initial channel numbers of the optical imaging branch and SAR image branch of 32 and 8, respectively. The prediction results demonstrated the effectiveness of the proposed method in accurately predicting forest changes and suppressing cloud interferences to some extent. Numéro de notice : A2022-772 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14195046 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.3390/rs14195046 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101800
in Remote sensing > vol 14 n° 19 (October-1 2022) . - n° 5046[article]