ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) . vol 11 n° 10Paru le : 01/10/2022 |
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierIncremental road network update method with trajectory data and UAV remote sensing imagery / Jianxin Qin in ISPRS International journal of geo-information, vol 11 n° 10 (October 2022)
[article]
Titre : Incremental road network update method with trajectory data and UAV remote sensing imagery Type de document : Article/Communication Auteurs : Jianxin Qin, Auteur ; Wenjie Yang, Auteur ; Tao Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 502 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] données spatiotemporelles
[Termes IGN] extraction du réseau routier
[Termes IGN] image captée par drone
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle de Markov caché
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] segmentation
[Termes IGN] trace au solRésumé : (auteur) GPS trajectory and remote sensing data are crucial for updating urban road networks because they contain critical spatial and temporal information. Existing road network updating methods, whether trajectory-based (TB) or image-based (IB), do not integrate the characteristics of both types of data. This paper proposed and implemented an incremental update method for rapid road network checking and updating. A composite update framework for road networks is established, which integrates trajectory data and UAV remote sensing imagery. The research proposed utilizing connectivity between adjacent matched points to solve the problem of updating problematic road segments in networks based on the features of the Hidden Markov Model (HMM) map-matching method in identifying new road segments. Deep learning is used to update the local road network in conjunction with the flexible and high-precision characteristics of UAV remote sensing. Additionally, the proposed method is evaluated against two baseline methods through extensive experiments based on real-world trajectories and UAV remote sensing imagery. The results show that our method has higher extraction accuracy than the TB method and faster updates than the IB method. Numéro de notice : A2022-791 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi11100502 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.3390/ijgi11100502 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101904
in ISPRS International journal of geo-information > vol 11 n° 10 (October 2022) . - n° 502[article]