Paru le : 01/11/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2022111 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierGraph neural networks with constraints of environmental consistency for landslide susceptibility evaluation / Haowei Zeng in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation Type de document : Article/Communication Auteurs : Haowei Zeng, Auteur ; Qing Zhu, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] cohérence des données
[Termes IGN] effondrement de terrain
[Termes IGN] prédiction
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal de graphes
[Termes IGN] vulnérabilitéRésumé : (auteur) In complex and heterogeneous geoenvironments, landslides exhibit varying features in different environments, and data in landslide inventories are imbalanced. Existing data-driven landslide susceptibility evaluation (LSE) methods overlook environmental heterogeneity and cannot reliably predict regions with few samples. Alternatively, global random negative sampling strategies may produce imbalanced positive and negative samples in some environments, contributing to inaccurate predictions. This article proposes a graph neural network (GNN) constrained by environmental consistency (GNN-EC) to overcome these problems. The GNN-EC consists of graphs with nodes, and edges. A graph represents the environmental relationships in the study area. Nodes are geographic units delineated from terrain polygon approximation. Edges capture the relationships between node-pairs. Additionally, the weights of edges reflect the similarity between two node environments. A GNN aggregates node information in the graph for LSE. Our experiment showed that the proposed method outperformed the common machine learning methods: increasing prediction accuracy by approximately 7, 5–6 and 3–4% compared to the artificial neural network (ANN), the support vector machine (SVM) and the random forest (RF), respectively. Moreover, our method can maintain high prediction accuracy, even with a small training set. Numéro de notice : A2022-626 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103819 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101396
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022)[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Geographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid / Zhen Dai in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : Geographically convolutional neural network weighted regression: a method for modeling spatially non-stationary relationships based on a global spatial proximity grid Type de document : Article/Communication Auteurs : Zhen Dai, Auteur ; Sensen Wu, Auteur ; Yuanyuan Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2248 - 2269 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] distribution spatiale
[Termes IGN] modèle de régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Geographically weighted regression (GWR) is a classical method of modeling spatially non-stationary relationships. The geographically neural network weighted regression (GNNWR) model solves the problem of the inaccurate construction of spatial weight kernels using a spatially weighted neural network. However, when the spatial distribution of observations is uneven, the spatial proximity expression in the input of GWR and GNNWR models does not fully represent the impact of the whole research space on the estimating point. Therefore, we established a global spatial proximity grid (GSPG) to express the spatial proximity of each estimating point and proposed a spatially weighted convolutional neural network (SWCNN) to extract the relationship between the GSPG and spatial weights. Finally, we proposed a geographically convolutional neural network weighted regression (GCNNWR) model combining SWCNN and ordinary linear regression (OLR) model to estimate spatial non-stationarity. We used two case studies of simulated data and real environment data to demonstrate the advancements of the GCNNWR model. The GCNNWR model achieved higher estimation accuracy and greater predictive power than the OLR, GWR, multi-scale GWR (MGWR), and GNNWR models. Moreover, the GCNNWR model maintained its better stability and accuracy in estimating spatially non-stationary relationships when the distribution of observations was uneven. Numéro de notice : A2022-773 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2100892 Date de publication en ligne : 27/09/2022 En ligne : https://doi.org/10.1080/13658816.2022.2100892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101954
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022) . - pp 2248 - 2269[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible An unsupervised framework for extracting multilane roads from OpenStreetMap / Kunkun Wu in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : An unsupervised framework for extracting multilane roads from OpenStreetMap Type de document : Article/Communication Auteurs : Kunkun Wu, Auteur ; Zhong Xie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2322 - 2344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] apprentissage non-dirigé
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] OpenStreetMap
[Termes IGN] polygone
[Termes IGN] regroupement de pics de densité
[Termes IGN] route
[Termes IGN] segment de droite
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Multilane roads are a set of approximately parallel line segments representing the same road in large-scale vector maps. They must be extracted first in cartographic generalization. There are numerous multilane roads in the easily accessible OpenStreetMap (OSM) dataset. For this dataset, polygon-based methods have achieved state-of-the-art performance. However, traditional polygon-based methods usually rely on manually labeled data, which means they are time-consuming and labor-intensive. To address this problem, an unsupervised framework for extracting multilane roads is proposed in this study. Road segments were first grouped to form the road polygons. A set of shape descriptors was formulated to reduce the dimensions of individual road polygons into conceptual points. Next, dimensional shape descriptors were standardized using logarithmic standardization. The density peaks clustering (DPC) algorithm was employed to classify these points. Then, cluster tags were identified manually to recognize which clusters represent multilane polygons. Finally, post-processing learning from the concept of assimilation is proposed to fill holes and remove islands. Experiments were conducted to extract multilane roads with datasets from three cities: Wuhan, Beijing and Munich. The experimental results show that the proposed framework effectively extracted multilane roads without any labels with accuracy levels comparable to those of supervised methods. Numéro de notice : A2022-797 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2107208 Date de publication en ligne : 05/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2107208 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101956
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022) . - pp 2322 - 2344[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible