Annals of forest research / Forest research and management institute . vol 65 n° 1Paru le : 01/01/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierPlanning coastal Mediterranean stone pine (Pinus pinea L.) reforestations as a green infrastructure: combining GIS techniques and statistical analysis to identify management options / Luigi Portoghesi in Annals of forest research, vol 65 n° 1 (January - June 2022)
[article]
Titre : Planning coastal Mediterranean stone pine (Pinus pinea L.) reforestations as a green infrastructure: combining GIS techniques and statistical analysis to identify management options Type de document : Article/Communication Auteurs : Luigi Portoghesi, Auteur ; Antonio Tomao, Auteur ; Simone Bollati, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 31 - 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] approche hiérarchique
[Termes IGN] carte forestière
[Termes IGN] Italie
[Termes IGN] littoral méditerranéen
[Termes IGN] peuplement pur
[Termes IGN] Pinus pinea
[Termes IGN] reboisement
[Termes IGN] résilience écologique
[Termes IGN] structure de la végétation
[Termes IGN] système d'information géographique
[Termes IGN] utilisation du sol
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Mediterranean stone pine reforestations are common characteristics of the Italian Tyrrhenian coast, which mostly maintain uniform and monolayered stand structures. However, improving structural diversity is an effective climate change adaptation strategy in forest management. The aim of this study was to implement a methodology which allows distinct reforested areas such as a single green infrastructure to be managed according to the surrounding land use and the characteristics of the forest stands. 240 hectares of Mediterranean stone pine forests located along a 16 km strip of the Lazio coast (Central Italy) were mapped. Twelve attributes describing the pine stands and showing possible constraints for future management decisions were associated to each forest patch. A hierarchical cluster analysis was performed to group the pinewood patches according to their similarity level and five different groups were identified. For each group, different silvicultural methods were proposed to guide the compositional and structural evolution of the stands, in order to make them suitable for providing services required locally and increasing overall diversity at landscape scale. The results of the study highlight how coastal land uses can offer effective inputs to differentiate the management of forest systems and therefore achieve greater variety and resilience in the landscape over time. This approach is particularly useful in the case of very homogeneous stands such as the stone pine reforestations under study. Numéro de notice : A2022-798 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.15287/afr.2022.2176 Date de publication en ligne : 27/06/2022 En ligne : https://doi.org/10.15287/afr.2022.2176 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101958
in Annals of forest research > vol 65 n° 1 (January - June 2022) . - pp 31 - 46[article]Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data / Fardin Moradi in Annals of forest research, vol 65 n° 1 (January - June 2022)
[article]
Titre : Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data Type de document : Article/Communication Auteurs : Fardin Moradi, Auteur ; Seyed Mohammad Moein Sadeghi, Auteur ; Hadi Beygi Heidarlou, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 182 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] allométrie
[Termes IGN] biomasse aérienne
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] forêt méditerranéenne
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] Iran
[Termes IGN] Quercus brantii
[Termes IGN] taillisRésumé : (auteur) Implementing a scheduled and reliable estimation of forest characteristics is important for the sustainable management of forests. This study aimed at evaluating the capability of Sentinel-2 satellite data to estimate above-ground biomass (AGB) in coppice forests of Persian oak (Quercus brantii var. persica) located in Western Iran. To estimate the AGB, field data collection was implemented in 80 square plots (40×40 m, area of 1600 m2). Two diameters of the crown were measured and used to calculate the AGB of each tree based on allometric equations. Then, the performance of satellite data in estimating the AGB was evaluated for the area of study using the field-based AGB (dependent variable) as well as the spectral band values, spectrally-derived vegetation indices (independent variables) and four machine learning (ML) algorithms: MultiLayer Perceptron Artificial Neural Network (MLPNN), k-Nearest Neighbor (kNN), Random Forest (RF), and Support Vector Regression (SVR). A five-fold cross-validation was used to verify the effectiveness of models. Examination of the Pearson’s correlation coefficient between AGB and the extracted values showed that IPVI and NDVI vegetation indices had the highest correlation with AGB (r = 0.897). The results indicated that the MLPNN algorithm was the best ML option (RMSE = 1.71 t ha-1; MAE = 1.37 t ha-1; relative RMSE = 24.75%; R2 = 0.87) in estimating the AGB, providing new insights on the capability of remotely sensed-based AGB modeling of sparse Mediterranean forest ecosystems in an area with limited number of field sample plots. Numéro de notice : A2022-876 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.15287/afr.2022.2390 Date de publication en ligne : 29/06/2022 En ligne : https://doi.org/10.15287/afr.2022.2390 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102180
in Annals of forest research > vol 65 n° 1 (January - June 2022) . - pp 165 - 182[article]