Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > segmentation > segmentation en régions > segmentation par graphes d'adjacence de régions
segmentation par graphes d'adjacence de régions |
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Spatially constrained regionalization with multilayer perceptron / Michael Govorov in Transactions in GIS, Vol 23 n° 5 (October 2019)
[article]
Titre : Spatially constrained regionalization with multilayer perceptron Type de document : Article/Communication Auteurs : Michael Govorov, Auteur ; Giedre Beconyte, Auteur ; Gennady Gienko, Auteur ; Victor Putrenko, Auteur Année de publication : 2019 Article en page(s) : pp 1048 - 1077 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] apprentissage automatique
[Termes IGN] classification dirigée
[Termes IGN] données géologiques
[Termes IGN] Perceptron multicouche
[Termes IGN] programmation par contraintes
[Termes IGN] régionalisation (segmentation)
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation par graphes d'adjacence de régions
[Termes IGN] Ukraine
[Termes IGN] uraniumRésumé : (auteur) In this article, multilayer perceptron (MLP) network models with spatial constraints are proposed for regionalization of geostatistical point data based on multivariate homogeneity measures. The study focuses on non stationarity and autocorrelation in spatial data. Supervised MLP machine learning algorithms with spatial constraints have been implemented and tested on a point dataset. MLP spatially weighted classification models and an MLP contiguity constrained classification model are developed to conduct spatially constrained regionalization. The proposed methods have been tested with an attribute‐rich point dataset of geological surveys in Ukraine. The experiments show that consideration of the spatial effects, such as the use of spatial attributes and their respective whitening, improve the output of regionalization. It is also shown that spatial sorting used to preserve spatial contiguity leads to improved regionalization performance. Numéro de notice : A2019-552 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12557 Date de publication en ligne : 09/07/2019 En ligne : https://doi.org/10.1111/tgis.12557 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94202
in Transactions in GIS > Vol 23 n° 5 (October 2019) . - pp 1048 - 1077[article]
Titre : Machine learning for image segmentation Titre original : Apprentissage artificiel pour la segmentation d'image Type de document : Thèse/HDR Auteurs : Kaiwen Chang, Auteur ; Jesus Angulo lopez, Directeur de thèse ; Jesus Angulo lopez, Directeur de thèse ; Bruno Figliuzzi, Directeur de thèse Editeur : Paris : Université Paris Sciences et Lettres Année de publication : 2019 Importance : 155 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université PSL, Spécialité : Morphologie MathématiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] base de données d'images
[Termes IGN] graphe
[Termes IGN] morphologie mathématique
[Termes IGN] optique géométrique
[Termes IGN] rayonnement lumineux
[Termes IGN] segmentation d'image
[Termes IGN] segmentation par graphes d'adjacence de régions
[Termes IGN] superpixelIndex. décimale : THESE Thèses et HDR Résumé : (auteur) In this PhD thesis, our aim is to establish a general methodology for performing the segmentation of a dataset constituted of similar images with only a few annotated images as training examples. This methodology is directly intended to be applied to images gathered in Earth observation or materials science applications, for which there is not enough annotated examples to train state-of-the-art deep learning based segmentation algorithms. The proposed methodology starts from a superpixel partition of the image and gradually merges the initial regions until anactual segmentation is obtained. The two main contributions described in this PhD thesis are the development of a new superpixel algorithm which makes use of the Eikonal equation, and the development of a superpixel merging algorithm steaming from the adaption of the Eikonal equation to the setting of graphs. The superpixels merging approach makes use of a region adjacency graph computed from the superpixel partition. The edges are weighted by a dissimilarity measure learned by a machine learning algorithm from low-level cues computed on the superpixels. In terms of application, our approach to image segmentation is finally evaluated on the SWIMSEG dataset, a dataset which contains sky cloud images. On this dataset, using only a limited amount of images for training our algorithm, we were able to obtain segmentation results similar to the ones obtained with state-of-the-art algorithms. Note de contenu : 1- Introduction
2- Fast marching based superpixels
3- Hierarchical segmentation based on wavelet decomposition
4- Learning similarities between regions
5- Region merging
6- Application
Conclusion and perspectivesNuméro de notice : 25837 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Morphologie Mathématique : Paris Sciences et Lettres : 2019 Organisme de stage : Centre de Morphologie Mathématique (Mines ParisTech) nature-HAL : Thèse DOI : sans En ligne : https://hal.archives-ouvertes.fr/tel-02510662 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95191