Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification basée sur les régions
classification basée sur les régionsVoir aussi |
Documents disponibles dans cette catégorie (7)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
[article]
Titre : Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss Type de document : Article/Communication Auteurs : Xianwei Zheng, Auteur ; Linxi Huan, Auteur ; Gui-Song Xia, Auteur ; Jianya Gong, Auteur Année de publication : 2020 Article en page(s) : pp 15-28 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification basée sur les régions
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] image à très haute résolution
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) Parsing very high resolution (VHR) urban scene images into regions with semantic meaning, e.g. buildings and cars, is a fundamental task in urban scene understanding. However, due to the huge quantity of details contained in an image and the large variations of objects in scale and appearance, the existing semantic segmentation methods often break one object into pieces, or confuse adjacent objects and thus fail to depict these objects consistently. To address these issues uniformly, we propose a standalone end-to-end edge-aware neural network (EaNet) for urban scene semantic segmentation. For semantic consistency preservation inside objects, the EaNet model incorporates a large kernel pyramid pooling (LKPP) module to capture rich multi-scale context with strong continuous feature relations. To effectively separate confusing objects with sharp contours, a Dice-based edge-aware loss function (EA loss) is devised to guide the EaNet to refine both the pixel- and image-level edge information directly from semantic segmentation prediction. In the proposed EaNet model, the LKPP and the EA loss couple to enable comprehensive feature learning across an entire semantic object. Extensive experiments on three challenging datasets demonstrate that our method can be readily generalized to multi-scale ground/aerial urban scene images, achieving 81.7% in mIoU on Cityscapes Test set and 90.8% in the mean F1-score on the ISPRS Vaihingen 2D Test set. Code is available at: https://github.com/geovsion/EaNet. Numéro de notice : A2020-703 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.019 Date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96228
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 15-28[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2020121 RAB Revue Centre de documentation En réserve L003 Disponible Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering / Shangpeng Sun in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering Type de document : Article/Communication Auteurs : Shangpeng Sun, Auteur ; Changying Li, Auteur ; Peng Wah Chee, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 195 - 207 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] cartographie 3D
[Termes IGN] classification basée sur les régions
[Termes IGN] distribution spatiale
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] gestion de production
[Termes IGN] Gossypium (genre)
[Termes IGN] phénologie
[Termes IGN] rendement agricole
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] surveillance de la végétationRésumé : (Auteur) Three-dimensional high throughput plant phenotyping techniques provide an opportunity to measure plant organ-level traits which can be highly useful to plant breeders. The number and locations of cotton bolls, which are the fruit of cotton plants and an important component of fiber yield, are arguably among the most important phenotypic traits but are complex to quantify manually. Hence, there is a need for effective and efficient cotton boll phenotyping solutions to support breeding research and monitor the crop yield leading to better production management systems. We developed a novel methodology for 3D cotton boll mapping within a plot in situ. Point clouds were reconstructed from multi-view images using the structure from motion algorithm. The method used a region-based classification algorithm that successfully accounted for noise due to sunlight. The developed density-based clustering method could estimate boll counts for this situation, in which bolls were in direct contact with other bolls. By applying the method to point clouds from 30 plots of cotton plants, boll counts, boll volume and position data were derived. The average accuracy of boll counting was up to 90% and the R2 values between fiber yield and boll number, as well as fiber yield and boll volume were 0.87 and 0.66, respectively. The 3D boll spatial distribution could also be analyzed using this method. This method, which was low-cost and provided improved site-specific data on cotton bolls, can also be applied to other plant/fruit mapping analysis after some modification. Numéro de notice : A2020-048 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.011 Date de publication en ligne : 25/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94561
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 195 - 207[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Simplicial complexes reconstruction and generalisation of 3d lidar data in urban scenes / Stéphane Guinard (2020)
Titre : Simplicial complexes reconstruction and generalisation of 3d lidar data in urban scenes Titre original : Reconstruction et généralisation de complexes simpliciaux à partir de scans lidar de scènes urbaines Type de document : Thèse/HDR Auteurs : Stéphane Guinard , Auteur ; Bruno Vallet , Directeur de thèse ; Laurent Caraffa , Encadrant Editeur : Champs/Marne : Université Paris-Est Année de publication : 2020 Note générale : bibliographie
École doctorale Mathématiques, Sciences et Technologies de l'Information et de la CommunicationLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification basée sur les régions
[Termes IGN] complexe simplicial
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] optimisation (mathématiques)
[Termes IGN] reconstruction d'objet
[Termes IGN] scène urbaine
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] simplification de maillageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Grâce à leur résolution et à leur accessibilité toujours meilleures, les capteurs LiDAR sont de plus en plus utilisés pour cartographier les villes. En effet, ces capteurs sont capables de réaliser efficacement des acquisitions à haut résolution, qui peuvent ensuite être utilisées pour produire des reconstructions géométriquement détaillées de scènes complexes. Cependant, une telle reconstruction nécessite d’organiser les données avec une structure de données adaptée, comme des nuages de points ou des maillages. Les nuages de points fournissent une représentation compacte des données, mais leur nature discrète empêche certaines applications telles que la visualisation ou la simulation. Les maillages permettent une représentation continue des surfaces, mais ne sont pas bien adaptés à la représentation d’objets complexes, dont le niveau de détail peut dépasser la résolution de l’acquisition. Pour remédier à ces limitations, nous proposons de reconstruire une géométrie continue uniquement lorsque suffisamment d’informations géométriques sont disponibles. Cela nous amène à créer une reconstruction mêlant triangles, arêtes et points. Nous appelons une telle collection d’objets un complexe simplicial. Dans cette thèse, nous étudions la création de modèles 3D de scènes urbaines géométriquement détaillés, basés sur des complexes simpliciaux. Nous montrons que les complexes simpliciaux sont une alternative appropriée aux maillages. En effet, ils sont rapides à calculer et peuvent être simplifiés tout en conservant une grande fidélité géométrique par rapport aux données d’entrée. Nous soutenons que les complexes simples transmettent de précieuses informations géométriques qui peuvent à leur tour être utilisées pour la sémantisation des nuages de points 3D. Nous pensons également qu’ils peuvent servir de base pour des reconstructions multi-échelles de scènes urbaines. Nous présentons d’abord un algorithme efficace pour le calcul de complexes simpliciaux à partir d’acquisitions LiDAR de scènes urbaines. Comme les complexes simpliciaux reconstruits peuvent être très lourds, ils peuvent être difficiles à traiter sur un ordinateur standard. Pour relever ce défi, nous étudions différentes approches pour les généraliser spatialement, en approximant de grandes zones géométriquement simples par des primitives simples. À cette fin, nous proposons un nouvel algorithme pour calculer des approximations planaires par morceaux de nuages de points 3D, basé sur une approche d’optimisation globale. Ensuite, nous proposons deux applications différentes des complexes simpliciaux. La première est une méthode de polygonalisation améliorant la création de modèles 3D légers mais géométriquement précis. La seconde est une méthode de classification faiblement supervisée utilisant des descripteurs 3D locaux et globaux. Numéro de notice : 17613 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE Nature : Thèse française Note de thèse : thèse : Géographie, Sciences de l'information et de la communication : Paris-Est : 2020 Organisme de stage : LaSTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 30/09/2020 En ligne : https://theses.hal.science/tel-02953672 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95943 Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density / Yuan Li in ISPRS Journal of photogrammetry and remote sensing, vol 153 (July 2019)
[article]
Titre : Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Bo Wu, Auteur ; Xuming Ge, Auteur Année de publication : 2019 Article en page(s) : pp 151 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification
[Termes IGN] classification basée sur les régions
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Hong-Kong
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] Paris (75)
[Termes IGN] scène urbaine
[Termes IGN] segmentation en régions
[Termes IGN] segmentation hiérarchique
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Objects are formed by various structures and such structural information is essential for the identification of objects, especially for street facilities presented by mobile laser scanning (MLS) data with abundant details. However, due to the large volume of data, large variations in point density, noise and complexity of scanned scenes, the achievement of effective decomposition of objects into physical meaningful structures remains a challenge issue. And structural information has been rarely considered to improve the accuracy of distinguishing between objects with global or local similarity, such as traffic signs and traffic lights. Therefore, we propose a structural segmentation and classification method for MLS point clouds that is efficient and robust to variations in point density and complex urban scenes. During the segmentation stage, a novel region growing approach and a multi-size supervoxel segmentation algorithm robust to noise and varying density are combined to extract effective local shape descriptors. Structural components with physically meaningful labels are generated via structural labelling and clustering. During the classification stage, we consider the structural information at various scales and locations and encode it into a conditional random-field model for unary and pairwise inferences. High-order potentials are also introduced into the conditional random field to eliminate regional label noise. These high-order potentials are defined upon regions independent of connection relationships and can therefore take effect on isolated nodes. Experiments with two MLS datasets of typical urban scenes in Paris and Hong Kong were used to evaluate the performance of the proposed method. Nine and eleven different object classes were recognized from these two datasets with overall accuracies of 97.13% and 95.79%, respectively, indicating the effectiveness of the proposed method of interpreting complex urban scenes from point clouds with large variations in point density. Compared with previous studies on the Paris dataset, our method was able to recognize more classes and obtained a mean F1-score of 72.70% of seven common classes, being higher than the best of previous results. Numéro de notice : A2019-262 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.007 Date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93075
in ISPRS Journal of photogrammetry and remote sensing > vol 153 (July 2019) . - pp 151 - 165[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Segmentation d'image par intégration itérative de connaissances / Mahaman Sani Chaibou Salaou (2019)
Titre : Segmentation d'image par intégration itérative de connaissances Type de document : Thèse/HDR Auteurs : Mahaman Sani Chaibou Salaou, Auteur ; Basel Solaiman, Directeur de thèse ; Mohamed Ali Mahjoub, Directeur de thèse Editeur : Institut Mines-Télécom Atlantique IMT Atlantique Année de publication : 2019 Autre Editeur : Université Bretagne Loire Importance : 148 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Ecole Nationale Supérieure Mines-Telecom Atlantique Bretagne Pays de la Loire, Spécialité : Signal, Image et VisionLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification basée sur les régions
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] description multiniveau
[Termes IGN] détection de régions
[Termes IGN] fusion de données
[Termes IGN] interprétation automatique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] zone d'intérêtIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Le traitement d’images est un axe de recherche très actif depuis des années. L’interprétation des images constitue une de ses branches les plus importantes de par ses applications socio-économiques et scientifiques. Cependant cette interprétation, comme la plupart des processus de traitements d’images, nécessite une phase de segmentation pour délimiter les régions à analyser. En fait l’interprétation est un traitement qui permet de donner un sens aux régions détectées par la phase de segmentation. Ainsi, la phase d’interprétation ne pourra analyser que les régions détectées lors de la segmentation. Bien que l’objectif de l’interprétation automatique soit d’avoir le même résultat qu’une interprétation humaine, la logique des techniques classiques de ce domaine ne marie pas celle de l’interprétation humaine. La majorité des approches classiques d’interprétation d’images séparent la phase de segmentation et celle de l’interprétation. Les images sont d’abord segmentées puis les régions détectées sont interprétées. En plus, au niveau de la segmentation les techniques classiques parcourent les images de manière séquentielle, dans l’ordre de stockage des pixels. Ce parcours ne reflète pas nécessairement le parcours de l’expert humain lors de son exploration de l’image. En effet ce dernier commence le plus souvent par balayer l’image à la recherche d’éventuelles zones d’intérêts. Dans le cas échéant, il analyse les zones potentielles sous trois niveaux de vue pour essayer de reconnaitre de quel objet s’agit-il. Premièrement, il analyse la zone en se basant sur ses caractéristiques physiques. Ensuite il considère les zones avoisinantes de celle-ci et enfin il zoome sur toute l’image afin d’avoir une vue complète tout en considérant les informations locales à la zone et celles de ses voisines. Pendant son exploration, l’expert, en plus des informations directement obtenues sur les caractéristiques physiques de l’image, fait appel à plusieurs sources d’informations qu’il fusionne pour interpréter l’image. Ces sources peuvent inclure les connaissent acquises grâce à son expérience professionnelle, les contraintes existantes entre les objets de ce type d’images, etc. L’idée de l’approche présentée ici est que simuler l’activité visuelle de l’expert permettrait une meilleure compatibilité entre les résultats de l’interprétation et ceux de l’expert. Ainsi nous retenons de cette analyse trois aspects importants du processus d’interprétation d’image que nous allons modéliser dans l’approche proposée dans ce travail : 1. Le processus de segmentation n’est pas nécessairement séquentiel comme la plus part des techniques de segmentations qu’on rencontre, mais plutôt une suite de décisions pouvant remettre en cause leurs prédécesseurs. L’essentiel étant à la fin d’avoir la meilleure classification des régions. L’interprétation ne doit pas être limitée par la segmentation. 2. Le processus de caractérisation d’une zone d’intérêt n’est pas strictement monotone i.e. que l’expert peut aller d’une vue centrée sur la zone à vue plus large incluant ses voisines pour ensuite retourner vers la vue contenant uniquement la zone et vice-versa. 3. Lors de la décision plusieurs sources d’informations sont sollicitées et fusionnées pour une meilleure certitude. La modélisation proposée de ces trois niveaux met particulièrement l’accent sur les connaissances utilisées et le raisonnement qui mène à la segmentation des images. Note de contenu : Introduction générale
1- Segmentation pour l’interprétation de scène
2- Segmentation par propagation des connaissances
3- Croissance des régions adaptative
4- Similarité des superpixels par apprentissage
ConclusionsNuméro de notice : 25840 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, Image et Vision : Ecole Nationale Supérieure Mines-Telecom Atlantique : 2019 nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-02310224 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95181 Extraction of landcover themes out of aerial orthoimages in mountainous areas using external information / Arnaud Le Bris (2007)PermalinkA high-reliability, high-resolution method for land cover classification into forest and non-forest / Roger Trias-Sanz (2005)Permalink