Descripteur
Termes IGN > informatique > intelligence artificielle > vision par ordinateur > cartographie et localisation simultanées
cartographie et localisation simultanéesSynonyme(s)SLAMVoir aussi |
Documents disponibles dans cette catégorie (29)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Comparative use of PPK-integrated close-range terrestrial photogrammetry and a handheld mobile laser scanner in the measurement of forest road surface deformation / Remzi Eker in Measurement, vol 206 (January 2023)
[article]
Titre : Comparative use of PPK-integrated close-range terrestrial photogrammetry and a handheld mobile laser scanner in the measurement of forest road surface deformation Type de document : Article/Communication Auteurs : Remzi Eker, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie terrestre
[Termes IGN] analyse comparative
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] chemin forestier
[Termes IGN] déformation de surface
[Termes IGN] lidar mobile
[Termes IGN] positionnement cinématique
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] télémétrie laser terrestre
[Termes IGN] TurquieRésumé : (auteur) This study aimed to compare a handheld mobile laser scanning (HMLS), called TORCH that uses the SLAM algorithm, and a PPK-integrated close-range terrestrial photogrammetry (CRTP) to measure forest road surface deformation. The PPK-integrated CRTP includes a multiband GNSS-module and a camera mounted on a 5-m prism pole. 3D point-clouds were gathered/produced at three different dates with approximately 3-month intervals. And then road surface deformations were determined by applying the M3C2 algorithm. Each method was compared by considering some advantages and disadvantages. PPK-integrated CRTP, which could only be used in areas where the GPS signal is not blocked, provided highly denser 3D point clouds than HMLS. However, for the first period, the difference of mean deformation values between the two methods was not statistically significant, whereas it was statistically significant for the second period. Both methods can be suggested to use in forest road surface deformation yet considering their limitations. Numéro de notice : A2023-043 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.measurement.2022.112322 Date de publication en ligne : 14/12/2022 En ligne : https://doi.org/10.1016/j.measurement.2022.112322 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102330
in Measurement > vol 206 (January 2023)[article]Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest / Daniel Kükenbrink in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)
[article]
Titre : Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest Type de document : Article/Communication Auteurs : Daniel Kükenbrink, Auteur ; Mauro Marty, Auteur ; Ruedi Bösch, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102999 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] caméra à bas coût
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tempérée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lidar mobile
[Termes IGN] lidar topographique
[Termes IGN] photogrammétrie terrestre
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] Zurich (Suisse)Résumé : (auteur) National forest inventories (NFI) are important for the assessment of the state and development of forests. Traditional NFIs often rely on statistical sampling approaches as well as expert assessment which may suffer from observer bias and may lack robustness for time series analysis. Over the course of the last decade, close-range remote sensing techniques such as terrestrial and mobile laser scanning became ever more established for the assessment of three-dimensional (3D) forest structure. With the ongoing trend to make the systems smaller, easier to use and more efficient, the pathway is being opened for an operational inclusion of such devices within the framework of an NFI to support the traditional field assessment. Close-range remote sensing could potentially speed up field inventory work as well as increase the area in which certain parameters are assessed. Benchmarks are needed to evaluate the performance of different close-range remote sensing devices and approaches, both in terms of efficiency as well as accuracy. In this study we evaluate the performance of two terrestrial (TLS), one handheld mobile (PLS) and two drone based (UAVLS) laser scanning systems to detect trees and extract the diameter at breast height (DBH) in three plots with a steep gradient in tree and understorey vegetation density. As a novelty, we also tested the acquisition of 3D point-clouds using a low-cost action camera (GoPro) in conjunction with the Structure from Motion (SfM) technique and compared its performance with those of the more costly LiDAR devices. Among the many parameters evaluated in traditional NFIs, the focus of the performance evaluation of this study is set on the automatic tree detection and DBH extraction. The results showed that TLS delivers the highest tree detection rate (TDR) of up to 94.6% under leaf-off and up to 82% under leaf-on conditions and a relative RMSE (rRMSE) for the DBH extraction between 2.5 and 9%, depending on the undergrowth complexity. The tested PLS system (leaf-on) achieved a TDR of up to 80% with an rRMSE between 3.7 and 5.8%. The tested UAVLS systems showed lowest TDR of less than 77% under leaf-off and less than 37% under leaf-on conditions. The novel GoPro approach achieved a TDR of up to 53% under leaf-on conditions. The reduced TDR can be explained by the reduced area coverage due to the chosen circular acquisition path taken with the GoPro approach. The DBH extraction performance on the other hand is comparable to those of the LiDAR devices with an rRMSE between 2 and 9%. Further benchmarks are needed in order to fully assess the applicability of these systems in the framework of an NFI. Especially the robustness under varying forest conditions (seasonality) and over a broader range of forest types and canopy structure has to be evaluated. Numéro de notice : A2022-787 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102999 Date de publication en ligne : 05/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102999 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101893
in International journal of applied Earth observation and geoinformation > vol 113 (September 2022) . - n° 102999[article]PKS: A photogrammetric key-frame selection method for visual-inertial systems built on ORB-SLAM3 / Arash Azimi in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
[article]
Titre : PKS: A photogrammetric key-frame selection method for visual-inertial systems built on ORB-SLAM3 Type de document : Article/Communication Auteurs : Arash Azimi, Auteur ; Ali Hosseininaveh Ahmadabadian, Auteur ; Fabio Remondino, Auteur Année de publication : 2022 Article en page(s) : pp 18 - 32 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] alignement
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] centrale inertielle
[Termes IGN] centre de gravité
[Termes IGN] déformation d'image
[Termes IGN] géoréférencement direct
[Termes IGN] méthode heuristique
[Termes IGN] semis de points
[Termes IGN] seuillage d'image
[Termes IGN] structure-from-motion
[Termes IGN] vision par ordinateurRésumé : (auteur) Key-frame selection methods were developed in the past years to reduce the complexity of frame processing in visual odometry (VO) and visual simultaneous localization and mapping (VSLAM) algorithms. Key-frames help increasing algorithm's performances by sparsifying frames while maintaining its accuracy and robustness. Unlike current selection methods that rely on many heuristic thresholds to decide which key-frame should be selected, this paper proposes a photogrammetric-based key-frame selection method built upon ORB-SLAM3. The proposed algorithm, named Photogrammetric Key-frame Selection (PKS), replaces static heuristic thresholds with photogrammetric principles, ensuring algorithm’s robustness and better point cloud quality. A key-frame is chosen based on adaptive thresholds and the Equilibrium Of Center Of Gravity (ECOG) criteria as well as Inertial Measurement Unit (IMU) observations. To evaluate the proposed PKS method, the European Robotics Challenge (EuRoC) and an in-house datasets are used. Quantitative and qualitative evaluations are made by comparing trajectories, point clouds quality and completeness and Absolute Trajectory Error (ATE) in mono-inertial and stereo-inertial modes. Moreover, for the generated dense point clouds, extensive evaluations, including plane-fitting error, model deformation, model alignment error, and model density and quality, are performed. The results show that the proposed algorithm improves ORB-SLAM3 positioning accuracy by 18% in stereo-inertial mode and 20% in mono-inertial mode without the use of heuristic thresholds, as well as producing a more complete and accurate point cloud up to 50%. The open-source code of the presented method is available at https://github.com/arashazimi0032/PKS. Numéro de notice : A2022-664 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.07.003 Date de publication en ligne : 12/07/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.07.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101525
in ISPRS Journal of photogrammetry and remote sensing > vol 191 (September 2022) . - pp 18 - 32[article]Advancements in underground mine surveys by using SLAM-enabled handheld laser scanners / Artu Ellmann in Survey review, vol 54 n° 385 (July 2022)
[article]
Titre : Advancements in underground mine surveys by using SLAM-enabled handheld laser scanners Type de document : Article/Communication Auteurs : Artu Ellmann, Auteur ; Kaia Kütimets, Auteur ; Sander Varbla, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 363 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arpentage
[Termes IGN] carrière souterraine
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] données lidar
[Termes IGN] Estonie
[Termes IGN] géoréférencement
[Termes IGN] industrie minière
[Termes IGN] mine
[Termes IGN] modélisation 3D
[Termes IGN] schiste
[Termes IGN] semis de points
[Termes IGN] système de numérisation mobile
[Termes IGN] télémètre laser terrestreRésumé : (auteur) Applicability of SLAM (simultaneous localization and mapping) technology for mine surveys and subsequent 3D modelling of post-extracted surfaces is assessed. The resulting surface geometry is validated via terrestrial laser scanner (TLS) acquired reference data. Typical discrepancies remained within 2 and 5 cm in horizontal and vertical directions, respectively. Discrepancies between TLS, SLAM-enabled handheld scanner and conventional surveying results are small and fully satisfy the contemporary accuracy requirements, yet evidence that the conventional mine survey results are affected by the subjectivity of the surveyors. The SLAM-enabled laser scanning hence appears to be the most suitable method for underground mining surveys. Numéro de notice : A2022-537 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1944545 Date de publication en ligne : 07/07/2021 En ligne : https://doi.org/10.1080/00396265.2021.1944545 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101093
in Survey review > vol 54 n° 385 (July 2022) . - pp 363 - 374[article]A method of vision aided GNSS positioning using semantic information in complex urban environment / Rui Zhai in Remote sensing, vol 14 n° 4 (February-2 2022)
[article]
Titre : A method of vision aided GNSS positioning using semantic information in complex urban environment Type de document : Article/Communication Auteurs : Rui Zhai, Auteur ; Yunbin Yuan, Auteur Année de publication : 2022 Article en page(s) : n° 869 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] apprentissage profond
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] centrale inertielle
[Termes IGN] filtre de Kalman
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] information sémantique
[Termes IGN] milieu urbain
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GNSS
[Termes IGN] segmentation sémantique
[Termes IGN] système de numérisation mobile
[Termes IGN] vision par ordinateurRésumé : (auteur) High-precision localization through multi-sensor fusion has become a popular research direction in unmanned driving. However, most previous studies have performed optimally only in open-sky conditions; therefore, high-precision localization in complex urban environments required an urgent solution. The complex urban environments employed in this study include dynamic environments, which result in limited visual localization performance, and highly occluded environments, which yield limited global navigation satellite system (GNSS) performance. In order to provide high-precision localization in these environments, we propose a vision-aided GNSS positioning method using semantic information by integrating stereo cameras and GNSS into a loosely coupled navigation system. To suppress the effect of dynamic objects on visual positioning accuracy, we propose a dynamic-simultaneous localization and mapping (Dynamic-SLAM) algorithm to extract semantic information from images using a deep learning framework. For the GPS-challenged environment, we propose a semantic-based dynamic adaptive Kalman filtering fusion (S-AKF) algorithm to develop vision aided GNSS and achieve stable and high-precision positioning. Experiments were carried out in GNSS-challenged environments using the open-source KITTI dataset to evaluate the performance of the proposed algorithm. The results indicate that the dynamic-SLAM algorithm improved the performance of the visual localization algorithm and effectively suppressed the error spread of the visual localization algorithm. Additionally, after vision was integrated, the loosely-coupled navigation system achieved continuous high-accuracy positioning in GNSS-challenged environments. Numéro de notice : A2022-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.3390/rs14040869 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.3390/rs14040869 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99792
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 869[article]3D stem modelling in tropical forest: towards improved biomass and biomass change estimates / Sébastien Bauwens (2022)PermalinkAdaptation d'un algorithme SLAM pour la vision panoramique multi-expositions dans des scènes à haute gamme dynamique / Eva Goichon (2022)PermalinkPermalinkPermalinkCartographie dense et compacte par vision RGB-D pour la navigation d’un robot mobile / Bruce Canovas (2021)PermalinkPermalinkIntelligent sensors for positioning, tracking, monitoring, navigation and smart sensing in smart cities / Li Tiancheng (2021)PermalinkPermalinkMéthodes de partage d'informations visuelles et inertielles pour la localisation et la cartographie simultanées décentralisées multi-robots / Rodolphe Dubois (2021)PermalinkMise en place de nouvelles méthodes d’acquisition par lasergrammétrie en milieu difficile et couvert forestier en vue de la construction d’un parc éolien / Jean-Baptiste Myotte-Duquet (2021)Permalink