Geoinformatica . vol 26 n° 4Mention de date : October 2022 Paru le : 01/10/2022 |
[n° ou bulletin]
est un bulletin de Geomatica / Canadian institute of geomatics = Association canadienne des sciences géomatiques (Canada) (1993 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSpatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions / Di Zhu in Geoinformatica, vol 26 n° 4 (October 2022)
[article]
Titre : Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions Type de document : Article/Communication Auteurs : Di Zhu, Auteur ; Yu Liu, Auteur ; Xin Yao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 645 - 676 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse multivariée
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage
[Termes IGN] intelligence artificielle
[Termes IGN] régression
[Termes IGN] régression géographiquement pondérée
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphesMots-clés libres : Geospatial artificial intelligence (GeoAI) Résumé : (auteur) Geospatial artificial intelligence (GeoAI) has emerged as a subfield of GIScience that uses artificial intelligence approaches and machine learning techniques for geographic knowledge discovery. The non-regularity of data structures has recently led to different variants of graph neural networks in the field of computer science, with graph convolutional neural networks being one of the most prominent that operate on non-euclidean structured data where the numbers of nodes connections vary and the nodes are unordered. These networks use graph convolution – commonly known as filters or kernels – in place of general matrix multiplication in at least one of their layers. This paper suggests spatial regression graph convolutional neural networks (SRGCNNs) as a deep learning paradigm that is capable of handling a wide range of geographical tasks where multivariate spatial data needs modeling and prediction. The feasibility of SRGCNNs lies in the feature propagation mechanisms, the spatial locality nature, and a semi-supervised training strategy. In the experiments, this paper demonstrates the operation of SRGCNNs with social media check-in data in Beijing and house price data in San Diego. The results indicate that a well-trained SRGCNN model is capable of learning from samples and performing reasonable predictions for unobserved locations. The paper also presents the effectiveness of incorporating the idea of geographically weighted regression for handling heterogeneity between locations in the model approach. Compared to conventional spatial regression approaches, SRGCNN-based models tend to generate much more accurate and stable results, especially when the sampling ratio is low. This study offers to bridge the methodological gap between graph deep learning and spatial regression analytics. The proposed idea serves as an example to illustrate how spatial analytics can be combined with state-of-the-art deep learning models, and to enlighten future research at the front of GeoAI. Numéro de notice : A2022-865 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-021-00454-x Date de publication en ligne : 02/11/2021 En ligne : https://doi.org/10.1007/s10707-021-00454-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102158
in Geoinformatica > vol 26 n° 4 (October 2022) . - pp 645 - 676[article]An analysis of twitter as a relevant human mobility proxy / Fernando Terroso-Saenz in Geoinformatica, vol 26 n° 4 (October 2022)
[article]
Titre : An analysis of twitter as a relevant human mobility proxy Type de document : Article/Communication Auteurs : Fernando Terroso-Saenz, Auteur ; Andres Muñoz, Auteur ; Francisco Arcas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 677 - 706 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] Espagne
[Termes IGN] géobalise
[Termes IGN] maladie virale
[Termes IGN] mobilité territoriale
[Termes IGN] TwitterRésumé : (auteur) During the last years, the analysis of spatio-temporal data extracted from Online Social Networks (OSNs) has become a prominent course of action within the human-mobility mining discipline. Due to the noisy and sparse nature of these data, an important effort has been done on validating these platforms as suitable mobility proxies. However, such a validation has been usually based on the computation of certain features from the raw spatio-temporal trajectories extracted from OSN documents. Hence, there is a scarcity of validation studies that evaluate whether geo-tagged OSN data are able to measure the evolution of the mobility in a region at multiple spatial scales. For that reason, this work proposes a comprehensive comparison of a nation-scale Twitter (TWT) dataset and an official mobility survey from the Spanish National Institute of Statistics. The target time period covers a three-month interval during which Spain was heavily affected by the COVID-19 pandemic. Both feeds have been compared in this context by considering different mobility-related features and spatial scales. The results show that TWT could capture only a limited number features of the latent mobility behaviour of Spain during the study period. Numéro de notice : A2022-866 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00460-z Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1007/s10707-021-00460-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102159
in Geoinformatica > vol 26 n° 4 (October 2022) . - pp 677 - 706[article]