Descripteur
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A GIS representation framework for location-based social media activities / Xuebin Wei in Transactions in GIS, vol 26 n° 3 (May 2022)
[article]
Titre : A GIS representation framework for location-based social media activities Type de document : Article/Communication Auteurs : Xuebin Wei, Auteur ; Xiaobai Yao, Auteur Année de publication : 2022 Article en page(s) : pp 1444 - 1464 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] cadre conceptuel
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] environnement géographique virtuel
[Termes IGN] Facebook
[Termes IGN] modèle conceptuel de données spatio-temporelles
[Termes IGN] ontologie
[Termes IGN] relations sociales
[Termes IGN] représentation des données
[Termes IGN] réseau social géodépendant
[Termes IGN] système d'information géographique
[Termes IGN] Time-geographyRésumé : (auteur) The past couple of decades have witnessed tremendous growth of location-based social media activities (LBSMA) data in virtual spaces, including virtual geographic environments. Such data become innovative resources for the analysis of human activities. Meanwhile, a shift of human interactions from geographical spaces to virtual spaces has been observed. Although this is an exciting research opportunity, it also imposes significant challenges on GIScience, as current GIS representation models are no longer sufficient to handle the increased sophistication of human activities data. This research formalizes an ontology for LBSMA data and a conceptual framework for representing such data in GIS. The framework contributes to GIScience as it enables interconnections of human activities in both the physical and virtual worlds to be represented, organized, retrieved, analyzed, and visualized. The proposed GIS representation model integrates a social dimension into the existing spatial–temporal representation models and allows data analysis in the spatial–temporal–social (STS) dimensions. The research tested this conceptual framework with a prototype and a case study using Facebook data. The prototype and the case study prove that the proposed framework can significantly enhance GIS capabilities for data organization, retrieval, and analysis of LBSMA data in STS dimensions. Numéro de notice : A2022-477 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article DOI : 10.1111/tgis.12929 Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1111/tgis.12929 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100825
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1444 - 1464[article]Constructing and analyzing spatial-social networks from location-based social media data / Xuebin Wei in Cartography and Geographic Information Science, vol 48 n° 3 (May 2021)
[article]
Titre : Constructing and analyzing spatial-social networks from location-based social media data Type de document : Article/Communication Auteurs : Xuebin Wei, Auteur ; Xiaobai Yao, Auteur Année de publication : 2021 Article en page(s) : pp 258 - 274 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de données
[Termes IGN] collecte de données
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] Facebook
[Termes IGN] géolocalisation
[Termes IGN] réseau social géodépendant
[Termes IGN] santé
[Termes IGN] système d'information géographique
[Termes IGN] urbanismeRésumé : (auteur) People interact with each other in space and time. Improved understanding of human interactions in spatial, temporal, and social dimensions are highly beneficial for research and practices in public health, urban planning, and other fields. Traditional methods of collecting social interaction data are time-intensive and resource-consuming, resulting in relatively small sample sizes and limited information. Furthermore, traditional methods often oversimplify the dynamics of human interactions and fail to capture the characteristics of places where the interactions occur. With the popularity of location-based social media (LBSM) platforms, people can publish information about their social events such as time, location, and other participants. This research introduces a framework that formalizes terminologies and concepts related to spatial-social connections for the construction of spatial-social networks from LBSM data in GIS. Supported by the framework, the study presents methods of collecting, analyzing, and visualizing LBSM data in spatial-social dimensions. The methods are implemented and tested in a case study with Facebook data. The case study demonstrates that location-based social media data can be transformed into spatial-social networks and then be analyzed and visualized to answer innovative types of scientific inquiries. Numéro de notice : A2021-612 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.1891974 Date de publication en ligne : 09/04/2021 En ligne : https://doi.org/10.1080/15230406.2021.1891974 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97538
in Cartography and Geographic Information Science > vol 48 n° 3 (May 2021) . - pp 258 - 274[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021031 RAB Revue Centre de documentation En réserve L003 Disponible Joint promotion partner recommendation systems using data from location-based social networks / Yi-Chung Chen in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
[article]
Titre : Joint promotion partner recommendation systems using data from location-based social networks Type de document : Article/Communication Auteurs : Yi-Chung Chen, Auteur ; Hsi-Ho Huang, Auteur ; Sheng-Min Chiu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 57 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] Facebook
[Termes IGN] Foursquare
[Termes IGN] géomercatique
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] point d'intérêt
[Termes IGN] politique commerciale
[Termes IGN] réseau social géodépendantRésumé : (auteur) Joint promotion is a valuable business strategy that enables companies to attract more customers at lower operational cost. However, finding a suitable partner can be extremely difficult. Conventionally, one of the most common approaches is to conduct survey-based analysis; however, this method can be unreliable as well as time-consuming, considering that there are likely to be thousands of potential partners in a city. This article proposes a framework to recommend Joint Promotion Partners using location-based social networks (LBSN) data. We considered six factors in determining the suitability of a partner (customer base, association, rating and awareness, prices and star ratings, distance, and promotional strategy) and developed efficient algorithms to perform the required calculations. The effectiveness and efficiency of our algorithms were verified using the Foursquare dataset and real-life case studies. Numéro de notice : A2021-152 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10020057 Date de publication en ligne : 30/01/2021 En ligne : https://doi.org/10.3390/ijgi10020057 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97063
in ISPRS International journal of geo-information > vol 10 n° 2 (February 2021) . - n° 57[article]