Photogrammetric record / Remote sensing and photogrammetry society . vol 37 n° 180Paru le : 01/12/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA comparative study on deep-learning methods for dense image matching of multi-angle and multi-date remote sensing stereo-images / Hessah Albanwan in Photogrammetric record, vol 37 n° 180 (December 2022)
[article]
Titre : A comparative study on deep-learning methods for dense image matching of multi-angle and multi-date remote sensing stereo-images Type de document : Article/Communication Auteurs : Hessah Albanwan, Auteur ; Rongjun Qin, Auteur Année de publication : 2022 Article en page(s) : pp 385 - 409 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couple stéréoscopique
[Termes IGN] modèle stéréoscopique
[Termes IGN] précision géométrique (imagerie)Résumé : (auteur) Deep-learning (DL) stereomatching methods gained great attention in remote sensing satellite datasets. However, most of these existing studies conclude assessments based only on a few/single stereo-images lacking a systematic evaluation on how robust DL methods are on satellite stereo-images with varying radiometric and geometric configurations. This paper provides an evaluation of four DL stereomatching methods through hundreds of multi-date multi-site satellite stereopairs with varying geometric configurations, against the traditional well-practiced Census-semi-global matching (SGM), to comprehensively understand their accuracy, robustness, generalisation capabilities, and their practical potential. The DL methods include a learning-based cost metric through convolutional neural networks (MC-CNN) followed by SGM, and three end-to-end (E2E) learning models using Geometry and Context Network (GCNet), Pyramid Stereo Matching Network (PSMNet), and LEAStereo. Our experiments show that E2E algorithms can achieve upper limits of geometric accuracies, while may not generalise well for unseen data. The learning-based cost metric and Census-SGM are rather robust and can consistently achieve acceptable results. All DL algorithms are robust to geometric configurations of stereopairs and are less sensitive in comparison to the Census-SGM, while learning-based cost metrics can generalise on satellite images when trained on different datasets (airborne or ground-view). Numéro de notice : A2022-938 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12430 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.1111/phor.12430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102684
in Photogrammetric record > vol 37 n° 180 (December 2022) . - pp 385 - 409[article]A unified framework for automated registration of point clouds, mesh surfaces and 3D models by using planar surfaces / Yuan Zhao in Photogrammetric record, vol 37 n° 180 (December 2022)
[article]
Titre : A unified framework for automated registration of point clouds, mesh surfaces and 3D models by using planar surfaces Type de document : Article/Communication Auteurs : Yuan Zhao, Auteur ; Hang Zhao, Auteur ; Marko Radanovic, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 366 - 384 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] chevauchement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] maillage
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] recalage de données localisées
[Termes IGN] semis de points
[Termes IGN] superposition de données
[Termes IGN] surface planeRésumé : (auteur) Numéro de notice : A2022-939 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12428 Date de publication en ligne : 18/10/2022 En ligne : https://doi.org/10.1111/phor.12428 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102685
in Photogrammetric record > vol 37 n° 180 (December 2022) . - pp 366 - 384[article]