Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond > réseau neuronal artificiel > réseau neuronal récurrent
réseau neuronal récurrent |
Documents disponibles dans cette catégorie (21)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Recurrent origin–destination network for exploration of human periodic collective dynamics / Xiaojian Chen in Transactions in GIS, vol 26 n° 1 (February 2022)
[article]
Titre : Recurrent origin–destination network for exploration of human periodic collective dynamics Type de document : Article/Communication Auteurs : Xiaojian Chen, Auteur ; Jiayi Xie, Auteur ; Changjiang Xiao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 317 - 340 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées dynamiques
[Termes IGN] flux
[Termes IGN] origine - destination
[Termes IGN] planification urbaine
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] taxi
[Termes IGN] Wuhan (Chine)Résumé : (auteur) While daily periodic movements of individuals have been widely studied, their collective dynamics are not understood. To capture periodic collective dynamics, this article represents individual daily movements as a time series of directed weighted origin–destination (OD) networks, and proposes an approach to identify a sub-network called the “recurrent OD network”, which contains frequent edges appearing in each day. Taxi trajectory data over a period of 6 months in Wuhan, China are used for the case study. Here, we extracted the recurrent OD networks for each 2-h period on a given day, and compared them with the corresponding “major OD network” defined by both frequent and infrequent edges. Results show that the recurrent OD networks coincidentally exhibit spatially localized community structures and distinctive patterns of inflow and outflow for each region within a day. Overall, both methodology and findings in this study might make significant contributions in a range of fields, such as urban planning, regional economic development, and infectious disease control. Numéro de notice : A2022-179 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12849 Date de publication en ligne : 05/10/2021 En ligne : https://doi.org/10.1111/tgis.12849 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99838
in Transactions in GIS > vol 26 n° 1 (February 2022) . - pp 317 - 340[article]Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques / Jean-Yves Franceschi (2022)
Titre : Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques Type de document : Thèse/HDR Auteurs : Jean-Yves Franceschi, Auteur ; Sylvain Lamprier, Directeur de thèse ; Patrick Gallinari, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2022 Importance : 304 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse soutenue pour obtenir le grade de Docteur en Informatique de Sorbonne UniversitéLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] données spatiotemporelles
[Termes IGN] équation différentielle
[Termes IGN] processus stochastique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] système dynamiqueIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L'essor de l'apprentissage profond trouve notamment sa source dans les avancées scientifiques qu'il a permises en termes d'apprentissage de représentations et de modèles génératifs. Dans leur grande majorité, ces progrès ont cependant été obtenus sur des données textuelles et visuelles statiques, les données temporelles demeurant un défi pour ces méthodes. Compte tenu de leur importance pour l'automatisation croissante de multiples tâches, de plus en plus de travaux en apprentissage automatique s'intéressent aux problématiques d'évolution temporelle. Dans cette thèse, nous étudions ainsi plusieurs aspects de la temporalité et des systèmes dynamiques dans les réseaux de neurones profonds pour l'apprentissage non supervisé de représentations et de modèles génératifs. Premièrement, nous présentons une méthode générale d'apprentissage de représentations non supervisée pour les séries temporelles prenant en compte des besoins pratiques d'efficacité et de flexibilité. Dans un second temps, nous nous intéressons à l'apprentissage pour les séquences structurées de nature spatio-temporelle, couvrant les vidéos et phénomènes physiques. En les modélisant par des équations différentielles paramétrisées par des réseaux de neurones, nous montrons la corrélation entre la découverte de représentations pertinentes d'un côté, et de l'autre la fabrique de modèles prédictifs performants sur ces données. Enfin, nous analysons plus généralement dans une troisième partie les populaires réseaux antagonistes génératifs dont nous décrivons la dynamique d'apprentissage par des équations différentielles, nous permettant d'améliorer la compréhension de leur fonctionnement. Note de contenu : 1- Motivation
2- Time series representation learning
3- State-space predictive models for spatiotemporal data
4- Analysis of GANs’ training dynamics
5- ConclusionNuméro de notice : 15203 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Paris : 2022 DOI : sans En ligne : https://tel.hal.science/tel-03591720 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100472
Titre : Deep learning architectures for onboard satellite image analysis Type de document : Thèse/HDR Auteurs : Gaétan Bahl, Auteur ; Florent Lafarge, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2022 Importance : 120 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de Doctorat de l'Université Côte d’Azur, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] contour
[Termes IGN] détection d'objet
[Termes IGN] extraction du réseau routier
[Termes IGN] forêt
[Termes IGN] image satellite
[Termes IGN] nuage
[Termes IGN] régression
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau neuronal récurrent
[Termes IGN] segmentation sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Les progrès des satellites d'observation de la Terre à haute résolution et la réduction des temps de revisite introduite par la création de constellations de satellites ont conduit à la création quotidienne de grandes quantités d'images (des centaines de Teraoctets par jour). Simultanément, la popularisation des techniques de Deep Learning a permis le développement d'architectures capables d'extraire le contenu sémantique des images. Bien que ces algorithmes nécessitent généralement l'utilisation de matériel puissant, des accélérateurs d'inférence IA de faible puissance ont récemment été développés et ont le potentiel d'être utilisés dans les prochaines générations de satellites, ouvrant ainsi la possibilité d'une analyse embarquée des images satellite. En extrayant les informations intéressantes des images satellite directement à bord, il est possible de réduire considérablement l'utilisation de la bande passante, du stockage et de la mémoire. Les applications actuelles et futures, telles que la réponse aux catastrophes, l'agriculture de précision et la surveillance du climat, bénéficieraient d'une latence de traitement plus faible, voire d'alertes en temps réel. Dans cette thèse, notre objectif est double : D'une part, nous concevons des architectures de Deep Learning efficaces, capables de fonctionner sur des périphériques de faible puissance, tels que des satellites ou des drones, tout en conservant une précision suffisante. D'autre part, nous concevons nos algorithmes en gardant à l'esprit l'importance d'avoir une sortie compacte qui peut être efficacement calculée, stockée, transmise au sol ou à d'autres satellites dans une constellation. Tout d'abord, en utilisant des convolutions séparables en profondeur et des réseaux neuronaux récurrents convolutionnels, nous concevons des réseaux neuronaux de segmentation sémantique efficaces avec un faible nombre de paramètres et une faible utilisation de la mémoire. Nous appliquons ces architectures à la segmentation des nuages et des forêts dans les images satellites. Nous concevons également une architecture spécifique pour la segmentation des nuages sur le FPGA d'OPS-SAT, un satellite lancé par l'ESA en 2019, et réalisons des expériences à bord à distance. Deuxièmement, nous développons une architecture de segmentation d'instance pour la régression de contours lisses basée sur une représentation à coefficients de Fourier, qui permet de stocker et de transmettre efficacement les formes des objets détectés. Nous évaluons la performance de notre méthode sur une variété de dispositifs informatiques à faible puissance. Enfin, nous proposons une architecture d'extraction de graphes routiers basée sur une combinaison de Fully Convolutional Networks et de Graph Neural Networks. Nous montrons que notre méthode est nettement plus rapide que les méthodes concurrentes, tout en conservant une bonne précision. Note de contenu : 1. Introduction
1.1 Context and motivation
1.2 Methods and Challenges
1.3 Contributions and outline
2. On-board image segmentation with compact networks
2.1 Introduction
2.2 Related works
2.3 Proposed architectures
2.4 Experiments on cloud segmentation
2.5 Experiments on forest segmentation
2.6 Conclusion
3. Recurrent convolutional networks for semantic segmentation
3.1 Introduction
3.2 Method
3.3 Experiments
3.4 Conclusion and future works
4. Regression of compact object contours
4.1 Introduction
4.2 Related Work
4.3 Method
4.4 Experiments
4.5 Conclusion
5. Road graph extraction
5.1 Introduction
5.2 Related Works
5.3 Method
5.4 Experiments
5.5 Limitations
5.6 Other uses of our method
5.7 Conclusion
6. Conclusion and Perspectives
6.1 Summary
6.2 Limitations and perspectives
6.3 Publications
6.4 Carbon Impact StatementNuméro de notice : 26912 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Côte d'Azur : 2022 Organisme de stage : Inria Sophia-Antipolis Méditerranée nature-HAL : Thèse DOI : sans Date de publication en ligne : 27/09/2022 En ligne : https://tel.hal.science/tel-03789667v2 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101955
Titre : Scene understanding and gesture recognition for human-machine interaction Type de document : Thèse/HDR Auteurs : Naina Dhingra, Auteur Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Année de publication : 2022 Note générale : Bibliographie
A dissertation submitted to attain the degree of Doctor of Sciences of ETH ZurichLangues : Français (fre) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification orientée objet
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] compréhension de l'image
[Termes IGN] image RVB
[Termes IGN] interaction homme-machine
[Termes IGN] oculométrie
[Termes IGN] reconnaissance automatique
[Termes IGN] reconnaissance de formes
[Termes IGN] reconnaissance de gestes
[Termes IGN] réseau neuronal récurrent
[Termes IGN] scène
[Termes IGN] vision par ordinateurRésumé : (auteur) Scene understanding and gesture recognition are useful for a myriad of applications such as human-robotic interaction, assisting blind and visually impaired people, advanced driver assistance systems, and autonomous driving. To work autonomously in real-world environments, automatic systems need to deliver non-verbal information to enhance the verbal communication in particular for blind people. We are exploring the holistic approach for providing the scene as well as gesture related information. We propose that incorporating attention mechanisms in neural networks which behave similarly to attention in the human brain, and conducting an integrated study using neural networks in real-time can yield significant improvements in the scene and gesture understanding, thereby enhancing the user experience. In this thesis, we investigate the understanding of visual scenes and gestures. We explore these two areas, in particular, by proposing novel architectures, training methods, user studies, and thorough evaluations. We show that, for deep learning approaches, attention or self attention mechanisms improve and push the boundaries of network performance for different tasks in consideration. We suggest that the various kinds of gestures can complement and supplement each other’s information to better understand non-verbal conversation; hence integrated gestures comprehension is useful. First, we focus on visual scene understanding using scene graph generation. We propose, BGT-Net, a new network that uses an object detection model with 1) bidirectional gated recurrent units for object-object communication and 2) transformer encoders including self attention to classify the objects and their relationships. We address the problem of bias caused by the long tailed distribution in the dataset. This enables the network to perform even for the unseen objects or relationships in the dataset. Second, we propose to learn hand gesture recognition from RGB and RGB-D videos using attention learning. We present a novel architecture based on residual connections and an attention mechanism. Our approach successfully detects hand gestures when evaluated on three open-source datasets. Third, we explore pointing gesture recognition and localization using open-source software, i.e. OpenPtrack which uses a deep learning based iii network to track multi-persons in the scene. We use a Kinect sensor as an input device and conduct a user study with 26 users to evaluate the system using two setup types. Fourth, we propose a technique to perform eye gaze tracking using OpenFace which is based on a deep learning model and RGB webcam. We use support vector machine regression to estimate the position of eye gaze on the screen. In a study, we evaluate the system with 28 users and show that this system can perform similarly to commercially expensive eye trackers. Finally, we focus on 3D head pose estimation using two models: 1)headPosr includes residual connections for the base network followed by a transformer encoder. It outperforms existing models but has a drawback of being computationally expensive; 2) lwPosr uses depthwise separable convolutions and transformer encoders. It is a two stream network in fine-grained fashion to estimate the three angles of the head pose. We demonstrate that this method is able to predict head poses better than state-of-the-art lightweight networks. Note de contenu : 1- Introduction
2- Background
3- State of the art
4- Scene graph generation
5- 3D hand gesture recognition
6- Pointing gesture recognition
7- Eye-gaze tracking
8- Head pose estimation
9- Lightweight head pose estimation
10- SummaryNuméro de notice : 24039 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse étrangère Note de thèse : PhD Thesis : Sciences : ETH Zurich :2022 DOI : sans En ligne : https://www.research-collection.ethz.ch/handle/20.500.11850/559347 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101876 Towards synthetic sensing for smart cities : a machine/deep learning-based approach / Faraz Malik Awan (2022)
Titre : Towards synthetic sensing for smart cities : a machine/deep learning-based approach Type de document : Thèse/HDR Auteurs : Faraz Malik Awan, Auteur ; Noël Crespi, Directeur de thèse ; Roberto Minerva, Directeur de thèse Editeur : Courcouronnes : Télécom SudParis Année de publication : 2022 Importance : 106 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l’Institut Polytechnique de Paris préparée à Telecom SudParis, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification par arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] Espagne
[Termes IGN] parking
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] pollution acoustique
[Termes IGN] pollution atmosphérique
[Termes IGN] réseau neuronal récurrent
[Termes IGN] système de transport intelligent
[Termes IGN] trafic routier
[Termes IGN] ville intelligenteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) We worked on one of the most significant research directions in Smart City, i.e., Intelligent Transportation System (ITS). ITS encapsulates several domains, such as electronic vehicles notification systems, traffic information, smart parking, and environment. However, in this thesis, we target two of its important domains; i) Smart Parking, and ii) Road Traffic. We started our research with Smart Parking use case. Performing literature review, we realized that different Machine Learning (ML) and Deep Learning (DL) approaches have been used for smart parking solutions. In most of these proposed approaches, enclosed parking areas were targeted with different feature sets to predict the "occupancy rate" in parking areas. It inspired us to conduct a comparative analysis to answer following questions; Given the parking prediction use case, how do the traditional ML models perform as compared to complex DL models? Provided big data, can less complex, traditional ML models outperform complex DL models? How well these models can perform to predict the availability of the individual on-street parking spots rather than predicting the overall occupancy rate of an enclosed parking area. To answer these questions, we choose five well-known classical ML algorithms (K-Nearest Neighbours, Random Forest, Decision Tree) and DL algorithm (Multilayer Perceptron). To take our investigation into depth, we train Ensemble Learning Model, in which we combine all the above-mentioned ML and DL models. A huge parking dataset of city of Santander, Spain, has been used which consists of around 25 million records. We also propose to recommend available parking spots based on the current location of the driver. Moving forward with our research goals, we performed literature review on road traffic and found road traffic associated with air pollution and noise pollution often. However, to the best of our knowledge, air pollution & noise pollution have never been use d in traffic prediction problem. In this part of our research, firstly we used air pollution (CO, NO, NO2, NOx, and O3) along with the atmospheric variables, such as wind speed, wind direction, temperature, and pressure to improve the traffic forecasting in the city of Madrid. This successful experiment motivated us to extend our investigation to another factor, which is also strongly correlated with road traffic i.e., noise pollution. Hence, as an extension of our previous work, in this part of our research, we use noise pollution to improve the traffic prediction in the city of Madrid. Note de contenu : 1- Introduction
2- Parking space prediction using classical ML and deep learning models
3- Road traffic prediction improvement using air pollution and atmospheric data
4- Using noise pollution to improve traffic prediction
5- Conclusion and future workNuméro de notice : 20025 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/URBANISME Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Telecom SudParis : 2022 Organisme de stage : SAMOVAR DOI : sans En ligne : https://tel.hal.science/tel-03722891/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101825 Predicting user activity intensity using geographic interactions based on social media check-in data / Jing Li in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)PermalinkImproving human mobility identification with trajectory augmentation / Fan Zhou in Geoinformatica, vol 25 n° 3 (July 2021)PermalinkRecurrent neural network for rain estimation using commercial microwave links / Hai Victor Habi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 5 (May 2021)PermalinkMulti-level progressive parallel attention guided salient object detection for RGB-D images / Zhengyi Liu in The Visual Computer, vol 37 n° 3 (March 2021)PermalinkA comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping / Zhice Fang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)PermalinkNonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)PermalinkSea surface temperature and high water temperature occurrence prediction using a long short-term memory model / Minkyu Kim in Remote sensing, vol 12 n° 21 (November 2020)PermalinkApplication of convolutional and recurrent neural networks for buried threat detection using ground penetrating radar data / Mahdi Moalla in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)PermalinkNeuroTPR: A neuro‐net toponym recognition model for extracting locations from social media messages / Jimin Wang in Transactions in GIS, Vol 24 n° 3 (June 2020)PermalinkPermalink