Descripteur
Documents disponibles dans cette catégorie (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic identification of addresses: A systematic literature review / Paula Cruz in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
[article]
Titre : Automatic identification of addresses: A systematic literature review Type de document : Article/Communication Auteurs : Paula Cruz, Auteur ; Leonardo Vanneschi, Auteur ; Marco Painho, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'adresses
[Termes IGN] géocodage par adresse postale
[Termes IGN] Geoparsing
[Termes IGN] service fondé sur la positionRésumé : (auteur) Address matching continues to play a central role at various levels, through geocoding and data integration from different sources, with a view to promote activities such as urban planning, location-based services, and the construction of databases like those used in census operations. However, the task of address matching continues to face several challenges, such as non-standard or incomplete address records or addresses written in more complex languages. In order to better understand how current limitations can be overcome, this paper conducted a systematic literature review focused on automated approaches to address matching and their evolution across time. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, resulting in a final set of 41 papers published between 2002 and 2021, the great majority of which are after 2017, with Chinese authors leading the way. The main findings revealed a consistent move from more traditional approaches to deep learning methods based on semantics, encoder-decoder architectures, and attention mechanisms, as well as the very recent adoption of hybrid approaches making an increased use of spatial constraints and entities. The adoption of evolutionary-based approaches and privacy preserving methods stand as some of the research gaps to address in future studies. Numéro de notice : A2022-088 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11010011 Date de publication en ligne : 29/12/2021 En ligne : https://doi.org/10.3390/ijgi11010011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99497
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 11[article]Mapping urban fingerprints of odonyms automatically extracted from French novels / Ludovic Moncla in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
[article]
Titre : Mapping urban fingerprints of odonyms automatically extracted from French novels Type de document : Article/Communication Auteurs : Ludovic Moncla , Auteur ; Mauro Gaio, Auteur ; Thierry Joliveau, Auteur ; Yves-François Le Lay, Auteur ; Pierre-Olivier Mazagol, Auteur Année de publication : 2019 Article en page(s) : pp 2477 - 2497 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes IGN] dix-neuvième siècle
[Termes IGN] empreinte
[Termes IGN] extraction automatique
[Termes IGN] Geoparsing
[Termes IGN] langage naturel (informatique)
[Termes IGN] littérature
[Termes IGN] odonymie
[Termes IGN] Paris (75)
[Termes IGN] reconnaissance de noms
[Termes IGN] route
[Termes IGN] traitement du langage naturelRésumé : (auteur) In this paper, we propose and discuss a methodology to map the spatial fingerprints of novels and authors based on all of the named urban roads (i.e., odonyms) extracted from novels. We present several ways to explore Parisian space and fictional landscapes by interactively and simultaneously browsing geographical space and literary text. Our project involves building a platform capable of retrieving, mapping and analyzing the occurrences of named urban roads in novels in which the action occurs wholly or partly in Paris. This platform will be used in several areas, such as cultural tourism, urban research, and literary analysis. The paper focuses on extracting named urban roads and mapping the results for a sample of 31 novels published between 1800 and 1914. Two approaches to the annotation of odonyms are compared. First, we describe a proof of concept using queries made via the TXM textual analysis platform. Then, we describe an automatic process using a natural language processing (NLP) method. Additionally, we mention how the geosemantic information annotated from the text (e.g., a structure combining verbs, spatial relations, named entities, adjectives and adverbs) can be used to automatically characterize the semantic content associated with named urban roads. Numéro de notice : A2019-427 Affiliation des auteurs : non IGN Thématique : TOPONYMIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1584804 Date de publication en ligne : 17/03/2019 En ligne : https://doi.org/10.1080/13658816.2019.1584804 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93560
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2477 - 2497[article]TAGGS : grouping tweets to improve global geoparsing for disaster response / Jens A. de Bruijn in Journal of Geovisualization and Spatial Analysis, vol 2 n° 1 (June 2018)
[article]
Titre : TAGGS : grouping tweets to improve global geoparsing for disaster response Type de document : Article/Communication Auteurs : Jens A. de Bruijn, Auteur ; Hans de Moel, Auteur ; Brenden Jongman, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Linguistique
[Termes IGN] catastrophe naturelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Geoparsing
[Termes IGN] inondation
[Termes IGN] prise en compte du contexte
[Termes IGN] risque naturel
[Termes IGN] TwitterRésumé : (Auteur) Timely and accurate information about ongoing events are crucial for relief organizations seeking to effectively respond to disasters. Recently, social media platforms, especially Twitter, have gained traction as a novel source of information on disaster events. Unfortunately, geographical information is rarely attached to tweets, which hinders the use of Twitter for geographical applications. As a solution, geoparsing algorithms extract and can locate geographical locations referenced in a tweet’s text. This paper describes TAGGS, a new algorithm that enhances location disambiguation by employing both metadata and the contextual spatial information of groups of tweets referencing the same location regarding a specific disaster type. Validation demonstrated that TAGGS approximately attains a recall of 0.82 and precision of 0.91. Without lowering precision, this roughly doubles the number of correctly found administrative subdivisions and cities, towns, and villages as compared to individual geoparsing. We applied TAGGS to 55.1 million flood-related tweets in 12 languages, collected over 3 years. We found 19.2 million tweets mentioning one or more flood locations, which can be towns (11.2 million), administrative subdivisions (5.1 million), or countries (4.6 million). In the future, TAGGS could form the basis for a global event detection system. Numéro de notice : A2018-588 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-017-0010-6 Date de publication en ligne : 26/12/2017 En ligne : https://doi.org/10.1007/s41651-017-0010-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92505
in Journal of Geovisualization and Spatial Analysis > vol 2 n° 1 (June 2018)[article]