IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI / IEEE Computer society . vol 32 n° 9Paru le : 01/09/2010 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI / IEEE Computer society (1979 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierGeometric feature extraction by a multimarked point process / Florent Lafarge in IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, vol 32 n° 9 (September 2010)
[article]
Titre : Geometric feature extraction by a multimarked point process Type de document : Article/Communication Auteurs : Florent Lafarge, Auteur ; Georgy Gimel'farb, Auteur ; Xavier Descombes, Auteur Année de publication : 2010 Article en page(s) : pp 1597 - 1609 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] distribution de Gibbs
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] processus ponctuel marquéRésumé : (auteur) This paper presents a new stochastic marked point process for describing images in terms of a finite library of geometric objects. Image analysis based on conventional marked point processes has already produced convincing results but at the expense of parameter tuning, computing time, and model specificity. Our more general multimarked point process has simpler parametric setting, yields notably shorter computing times, and can be applied to a variety of applications. Both linear and areal primitives extracted from a library of geometric objects are matched to a given image using a probabilistic Gibbs model, and a Jump-Diffusion process is performed to search for the optimal object configuration. Experiments with remotely sensed images and natural textures show that the proposed approach has good potential. We conclude with a discussion about the insertion of more complex object interactions in the model by studying the compromise between model complexity and efficiency. Numéro de notice : A2010-698 Affiliation des auteurs : non IGN Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Article DOI : 10.1109/TPAMI.2009.152 Date de publication en ligne : 18/08/2009 En ligne : https://doi.org/10.1109/TPAMI.2009.152 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102368
in IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI > vol 32 n° 9 (September 2010) . - pp 1597 - 1609[article]