Descripteur
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A high-resolution panchromatic-multispectral satellite image fusion method assisted with building segmentation / Fang Gao in Computers & geosciences, vol 168 (November 2022)
[article]
Titre : A high-resolution panchromatic-multispectral satellite image fusion method assisted with building segmentation Type de document : Article/Communication Auteurs : Fang Gao, Auteur ; Yihui Li, Auteur ; Peng Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105219 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] filtre de Gauss
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image Jilin
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image satellite
[Termes IGN] lissage de donnéesRésumé : (auteur) The main difficulty of panchromatic-multispectral image fusion is to balance the quality of spatial information and the spectral fidelity. Most of the practical fusion methods determine the optimal parameters based on the spatial and spectral characteristics of all original panchromatic and multispectral bands. However, for built-up and non-built-up areas (like cropland, forest) in one image, there may be large differences in their spatial and spectral characteristics, so their fused results are not optimal respectively with same parameters. To address above issues, this paper presents a high-resolution satellite image fusion method assisted with building segmentation. First, the proposed approach computes the average gradient and Gaussian filtering parameters of built-up and non-built-up areas separately according to the building segmentation results, on the basis of smoothing filter-based intensity modulation (SFIM). Then the intermediate data of two types of areas are computed in parallel and they are composited to obtain the final fused image, weighted by the pixel-wise “building factors” derived from the building segmentation results. Moreover, to better simulate the spatial characteristics of the multispectral image, we perform the “gradient simulation” operation to extract the gradient values in the multispectral image. Experimental results on Jilin-1 satellite images show that the proposed method provides competitive performance in spatial resolution, multispectral fidelity and quantity of information, as compared to the state-of-the-art methods in mainstream commercial software. Numéro de notice : A2022-721 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105219 Date de publication en ligne : 11/09/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105219 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101657
in Computers & geosciences > vol 168 (November 2022) . - n° 105219[article]A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery / Niangang Jiao in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
[article]
Titre : A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery Type de document : Article/Communication Auteurs : Niangang Jiao, Auteur ; Feng Wang, Auteur ; Hongjian You, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 377 - 388 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] chaîne de traitement
[Termes IGN] correction géométrique
[Termes IGN] étalonnage géométrique
[Termes IGN] géolocalisation
[Termes IGN] image Gaofen
[Termes IGN] image Jilin
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image satellite
[Termes IGN] point d'appui
[Termes IGN] précision géométrique (imagerie)Résumé : (auteur) To date, numerous Earth observation datasets from different types of satellites have been widely used in photogrammetric fields, including urban 3D modelling and geographic information systems. The development of small satellites has provided a new way to obtain repeated observations in a short period. However, compared with that of standard satellite imagery, the geometric performance of imagery from small satellites is relatively poor, restricting their photogrammetric applications. Traditional methods can improve the accuracy of optical images with the addition of well-distributed ground control points (GCPs), which require considerable financial and human resources. The collection of multi-view datasets is an alternative method for geometric processing without GCPs, but relies heavily on the stability and revisit period of satellite platforms. Therefore, this paper presents a framework for improving the geopositioning accuracy of multi-source datasets obtained from optical and synthetic aperture radar (SAR) satellites, and a novel heterogeneous weight strategy is proposed based on an analysis of the geometric error sources of SAR and optical images. The geometric performance of multi-source optical imagery from the Jilin-1 (JL-1) small satellite constellation is evaluated and analysed first, and then Gaofen-3 (GF-3) SAR images are calibrated based on statistical analysis for the production of virtual control points (VCPs). Based on our proposed heterogeneous weight strategy, multi-source optical and SAR images are integrated to improve the geopositioning accuracy. Experimental results indicate that our proposed model can achieve the best performance compared with other popular models, producing an accuracy of approximately 3 m in planimetry and 2 m in height, thereby providing a generic way to synergistically use multi-source remote sensing data. Numéro de notice : A2020-642 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.017 Date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96066
in ISPRS Journal of photogrammetry and remote sensing > vol 169 (November 2020) . - pp 377 - 388[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt