Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification par réseau neuronal > classification par Perceptron multicouche
classification par Perceptron multicouche |
Documents disponibles dans cette catégorie (25)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Tidal level prediction using combined methods of harmonic analysis and deep neural networks in Southern coastline of Iran / Kourosh Shahryari Nia in Marine geodesy, vol 45 n° 6 (November 2022)
[article]
Titre : Tidal level prediction using combined methods of harmonic analysis and deep neural networks in Southern coastline of Iran Type de document : Article/Communication Auteurs : Kourosh Shahryari Nia, Auteur ; Mohammad Ali Sharifi, Auteur ; Saeed Farzaneh, Auteur Année de publication : 2022 Article en page(s) : pp 645 - 669 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse harmonique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données marégraphiques
[Termes IGN] Iran
[Termes IGN] marée océanique
[Termes IGN] modèle de simulation
[Termes IGN] niveau de la mer
[Vedettes matières IGN] AltimétrieRésumé : (auteur) Predicting tides and water levels had always been such an important topic for researchers and professionals since the study of tidal level has pivotal role in supporting marine economy, port construction projects and maritime transportation. Tidal water levels are a combination of astronomical (deterministic part) and non-astronomical (stochastic part) water levels. In this study, we combined Harmonic Analysis (HA) with three Deep Neural Networks (DNNs), namely the Long-Short Term Memory (LSTM), Convolution Neural Network (CNN), and Multilayer Perceptron (MLP). The HA method is used for predicting the astronomical components, while DNNs are used to predict the non-astronomical water level. We have used tide gauge data from three stations along the southern coastline of Iran to demonstrate the effectiveness and accuracy of our model. We utilized RMSE, MAE, R2 (r-squared), and MAPE to evaluate the performance of the model. Finally, The LSTM network shown superior performance in most of the cases, although other networks also show good results. All three DNNs have R2 of 0.99, and the RMSE, MAE, and MAPE indicate that errors are low. Numéro de notice : A2022-783 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/01490419.2022.2116615 Date de publication en ligne : 28/08/2022 En ligne : https://doi.org/10.1080/01490419.2022.2116615 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101880
in Marine geodesy > vol 45 n° 6 (November 2022) . - pp 645 - 669[article]Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood / Amid Darabi in Geocarto international, vol 37 n° 19 ([15/09/2022])
[article]
Titre : Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood Type de document : Article/Communication Auteurs : Amid Darabi, Auteur ; Omid Rahmati, Auteur ; Seyed Amir Naghibi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 5716 - 5741 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] aléa
[Termes IGN] apprentissage automatique
[Termes IGN] cartographie des risques
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] écoulement des eaux
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] simulation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) In this study, a new hybridized machine learning algorithm for urban flood susceptibility mapping, named MultiB-MLPNN, was developed using a multi-boosting technique and MLPNN. The model was tested in Amol City, Iran, a data-scarce city in an ungauged area which is prone to severe flood inundation events and currently lacks flood prevention infrastructure. Performance of the hybridized model was compared with that of a standalone MLPNN model, random forest and boosted regression trees. Area under the curve, efficiency, true skill statistic, Matthews correlation coefficient, misclassification rate, sensitivity and specificity were used to evaluate model performance. In validation, the MultiB-MLPNN model showed the best predictive performance. The hybridized MultiB-MLPNN model is thus useful for generating realistic flood susceptibility maps for data-scarce urban areas. The maps can be used to develop risk-reduction measures to protect urban areas from devastating floods, particularly where available data are insufficient to support physically based hydrological or hydraulic models. Numéro de notice : A2022-708 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920629 Date de publication en ligne : 13/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920629 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101578
in Geocarto international > vol 37 n° 19 [15/09/2022] . - pp 5716 - 5741[article]Deep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)
[article]
Titre : Deep learning method for Chinese multisource point of interest matching Type de document : Article/Communication Auteurs : Pengpeng Li, Auteur ; Jiping Liu, Auteur ; An Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage profond
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] inférence sémantique
[Termes IGN] information sémantique
[Termes IGN] point d'intérêt
[Termes IGN] représentation vectorielle
[Termes IGN] traitement du langage naturelRésumé : (auteur) Multisource point of interest (POI) matching refers to the pairing of POIs that refer to the same geographic entity in different data sources. This also constitutes the core issue in geospatial data fusion and update. The existing methods cannot effectively capture the complex semantic information from a text, and the manually defined rules largely affect matching results. This study developed a multisource POI matching method based on deep learning that transforms the POI pair matching problem into a binary classification problem. First, we used three different Chinese word segmentation methods to segment the POI text attributes and used the segmentation results to train the Word2Vec model to generate the corresponding word vector representation. Then, we used the text convolutional neural network (Text-CNN) and multilayer perceptron (MLP) to extract the POI attributes' features and generate the corresponding feature vector representation. Finally, we used the enhanced sequential inference model (ESIM) to perform local inference and inference combination on each attribute to realize the classification of POI pairs. We used the POI dataset containing Baidu Map, Tencent Map, and Gaode Map from Chengdu to train, verify, and test the model. The experimental results show that the matching precision, recall rate, and F1 score of the proposed method exceed 98% on the test set, and it is significantly better than the existing matching methods. Numéro de notice : A2022-513 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101821 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101053
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101821[article]Flood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach / Quoc Bao Pham in Natural Hazards, vol 113 n° 2 (September 2022)
[article]
Titre : Flood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach Type de document : Article/Communication Auteurs : Quoc Bao Pham, Auteur ; Sk Ajim Ali, Auteur ; Elzbieta Bielecka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1043 - 1081 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographique
[Termes IGN] Varsovie (Pologne)
[Termes IGN] vulnérabilité
[Termes IGN] zone urbaine denseRésumé : (auteur) Advances in the availability of multi-sensor, remote sensing-derived datasets, and machine learning algorithms can now provide an unprecedented possibility to predict flood events and risk. Therefore, this study was undertaken to develop a flood vulnerability map and to assess the exposure of buildings to flood risk in Warsaw, the capital of Poland. This goal was pursued in four research phases. The thirteen flood predictors were evaluated using information gain ratio (IGR), and finally reduced to eight of the most causative ones and used for flood vulnerability mapping with three machine learning algorithms, Artificial Neural Network Multi-Layer Perceptron (ANN/MLP), Deep Learning Neural Network based approach—DL4j (DLNN-DL4j) and Bayesian Logistic Regression (BLR). These algorithms show a good predictive performance with the receiver operating curve (ROC) value of 0.851, 0.877 and 0.697, respectively. The buildings’ exposure to flood was assessed in line with criteria established in European and national legal regulations. The introduced new buildings' flood hazard index (BFH) revealed a significant similarity of potential flood risk for both models, highlighting the greatest risk in zones with high vulnerability to flooding. Depending on the method used, the BFH value was 0.54 (ANN), 0.52 (DLNNs) or 0.64 (BLR). The holistic approach proposed in this study could assist local authorities in improving flood management. Numéro de notice : A2022-705 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1007/s11069-022-05336-5 Date de publication en ligne : 05/04/2022 En ligne : https://doi.org/10.1007/s11069-022-05336-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101569
in Natural Hazards > vol 113 n° 2 (September 2022) . - pp 1043 - 1081[article]A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])
[article]
Titre : A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway Type de document : Article/Communication Auteurs : Reza Sanayeia, Auteur ; Alireza Vafaeinejad, Auteur ; Jalal Karami, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4141 - 4157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] accident de la route
[Termes IGN] autocorrélation
[Termes IGN] autoroute
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographique
[Termes IGN] Téhéran
[Termes IGN] transformation en ondelettesRésumé : (auteur) The aim of this study is to develop a model to predict temporal daily collision by integrating of Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms. As a case study, the integrated model was tested on 1097 daily traffic collisions data of Karaj-Qazvin freeway from 2009 to 2013 and the results were compared with the conventional ANN prediction model. In this method, initially, the raw collision data were analyzed, normalized, and classified via Geographical Information System (GIS). Partial Autocorrelation Function (PACF) was also utilized to evaluate the temporal autocorrelation for consecutive existing daily data. The results of this study showed that the proposed integrated DWT-ANN method provided higher predictive accuracy in daily traffic collision than ANN model by increasing coefficient of determination (R2) from 0.66 to 0.82. Numéro de notice : A2022-650 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/10106049.2021.1871669 Date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.1080/10106049.2021.1871669 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101472
in Geocarto international > vol 37 n° 14 [20/07/2022] . - pp 4141 - 4157[article]A graph attention network for road marking classification from mobile LiDAR point clouds / Lina Fang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)PermalinkSimultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 / Nima Pahlevan in Remote sensing of environment, vol 270 (March 2022)PermalinkAbove-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data / Fardin Moradi in Annals of forest research, vol 65 n° 1 (January - June 2022)PermalinkApplication of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image / Efosa Gbenga Adagbasa in Geocarto international, vol 37 n° 1 ([01/01/2022])PermalinkClassification of mediterranean shrub species from UAV point clouds / Juan Pedro Carbonell-Rivera in Remote sensing, vol 14 n° 1 (January-1 2022)PermalinkMonitoring grassland dynamics by exploiting multi-modal satellite image time series / Anatol Garioud (2022)PermalinkTowards synthetic sensing for smart cities : a machine/deep learning-based approach / Faraz Malik Awan (2022)PermalinkDeep-learning-based burned area mapping using the synergy of Sentinel-1&2 data / Qi Zhang in Remote sensing of environment, vol 264 (October 2021)PermalinkUsing information entropy and a multi-layer neural network with trajectory data to identify transportation modes / Qingying Yu in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)PermalinkEstimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey / Alkan Günlü in Geocarto international, vol 36 n° 8 ([01/05/2021])Permalink