Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > phytobiologie > nutrition végétale
nutrition végétale |
Documents disponibles dans cette catégorie (148)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Forest structure and fine root biomass influence soil CO2 efflux in temperate forests under drought / Antonios Apostolakis in Forests, vol 14 n° 2 (February 2023)
[article]
Titre : Forest structure and fine root biomass influence soil CO2 efflux in temperate forests under drought Type de document : Article/Communication Auteurs : Antonios Apostolakis, Auteur ; Ingo Schöning, Auteur ; Beate Michalzik, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 411 Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] biomasse forestière
[Termes IGN] forêt tempérée
[Termes IGN] puits de carbone
[Termes IGN] qualité du sol
[Termes IGN] sécheresse
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] température au sol
[Termes IGN] teneur en carbone
[Termes IGN] teneur en eau de la végétation
[Vedettes matières IGN] Végétation et changement climatiqueNuméro de notice : A2023-165 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14020411 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.3390/f14020411 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102871
in Forests > vol 14 n° 2 (February 2023) . - n° 411[article]A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band / Xinjie Liu in Remote sensing of environment, vol 284 (January 2023)
[article]
Titre : A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band Type de document : Article/Communication Auteurs : Xinjie Liu, Auteur ; Liangyun Liu, Auteur ; Cédric Bacour, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113341 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] canopée
[Termes IGN] chlorophylle
[Termes IGN] fluorescence
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] image Terra-MODIS
[Termes IGN] production primaire brute
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance de surface
[Termes IGN] réflectance végétaleRésumé : (auteur) Satellite-based data of solar-induced chlorophyll fluorescence (SIF) and the near-infrared radiation reflected by vegetation (NIRvP) are being increasingly used for the estimation of vegetation gross primary product (GPP) at the global scale. Although SIF contains more physiological information than NIRvP, NIRvP can have higher data quality and spatio-temporal resolution. Therefore, the two variables can be considered complementary for GPP monitoring. Here, we propose a simple framework to combine SIF and NIRvP data from different data sources to generate an enhanced SIF product (eSIF). The original SIF data comes from the TROPOMI instrument onboard the Sentinel-5P mission, whereas NIRvP data are derived from MODIS spectral reflectance and ERA5 reanalysis data. The resulting eSIF product has a spatial resolution of 0.05° and a temporal resolution of 8 days, as well as a higher signal-to-noise ratio and a lower angular dependency than the original TROPOMI SIF data. Our results demonstrate that eSIF has similar spatial patterns to the original SIF but is more spatially continuous and less noisy. Comparisons with the FLUXCOM global GPP product show that eSIF has a more universal relationship with GPP than NIRvP for different grass/crop plant functional types (the coefficients of variation are 18.9% for slopes of GPP to eSIF and 27.3% for slopes of GPP to NIRvP), but NIRvP outperforms eSIF for tracking GPP for forest PFTs exclude BoENF. Moreover, eSIF is able to better track the seasonal variations in GPP related to environmental stresses. This study highlights that our methodology based on the combination of SIF and NIRvP is a promising approach for better monitoring of GPP. Numéro de notice : A2023-017 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113341 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113341 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102151
in Remote sensing of environment > vol 284 (January 2023) . - n° 113341[article]Desiccation does not increase frost resistance of pedunculate oak (Quercus robur L.) seeds / Paweł Chmielarz in Annals of Forest Science, vol 79 n° 1 (2022)
[article]
Titre : Desiccation does not increase frost resistance of pedunculate oak (Quercus robur L.) seeds Type de document : Article/Communication Auteurs : Paweł Chmielarz, Auteur ; Jan Suszka, Auteur ; Mikołaj Krzysztof Wawrzyniak, Auteur Année de publication : 2022 Article en page(s) : n° 3 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] croissance des arbres
[Termes IGN] gelée
[Termes IGN] germination
[Termes IGN] Quercus pedunculata
[Termes IGN] semence
[Termes IGN] stockage
[Termes IGN] teneur en eau de la végétation
[Vedettes matières IGN] BotaniqueRésumé : (Auteur) Key message: Decreasing acorns moisture content does not significantly increase the frost resistance of pedunculate oak seeds. Slight reduction in acorn moisture content below the relatively high, optimal level decreased seed survival at temperatures below − 5 °C. The limiting temperature for pedunculate oak’s acorns below which they lose their ability to germinate is about − 10 °C.
Context: Seed moisture content plays an important role in successful seed storage of many species, as desiccation increases frost resistance; however, oak seeds tolerate desiccation only to a very small extent.
Aims: In our study, we examined the impact of decreasing moisture content in acorns of pedunculate oak (Quercus robur L.) on their frost resistance (below − 3 °C) and the growth of seedling derived from frozen seeds.
Methods: Germination and seedling emergence of individual seeds, as well as the dry mass of their 3-month-old seedlings, were measured after acorn desiccation (24–40%, fresh weight basis) and desiccation followed by freezing at temperatures from − 3 °C to − 18 °C for 2 weeks.
Results: Decreasing acorns moisture content did not significantly increase the frost resistance of pedunculate oak seeds. The lowest temperature at which at least half seeds remain viable was − 10 °C. Slight acorns desiccation had only a small positive effect on seeds frozen below − 11 °C (down to − 13 °C), but in this case (acorn moisture content of 33%), low germinability after freezing made storage uneconomic because of the high mortality of seeds. Germinated seeds after desiccation and freezing showed no significant difference in later growth.
Conclusion: Fresh pedunculate oak seed can survive freezing temperature down to − 10 °C and produce good quality seedlings. Temperatures around − 11° to − 13 °C are near lethal to acorns and significantly reduce their viability. Overall, desiccation does not increase their frost resistance; therefore, in practice, it is important to keep acorns during a cold storage in the highly hydrated state.Numéro de notice : A2022-069 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01121-3 Date de publication en ligne : 24/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01121-3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100014
in Annals of Forest Science > vol 79 n° 1 (2022) . - n° 3[article]Alternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation / Toshihiro Sakamoto in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)
[article]
Titre : Alternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation Type de document : Article/Communication Auteurs : Toshihiro Sakamoto, Auteur ; Daisuke Ogawa, Auteur ; Satoko Hiura, Auteur ; Nobusuke Iwasaki, Auteur Année de publication : 2022 Article en page(s) : pp 323 - 332 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bande spectrale
[Termes IGN] blé (céréale)
[Termes IGN] chlorophylle
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] indice de végétation
[Termes IGN] orthophotoplan numérique
[Termes IGN] point d'appui
[Termes IGN] précision du positionnement
[Termes IGN] rizière
[Termes IGN] structure-from-motionRésumé : (Auteur) Vegetation indices (VIs), such as the green chlorophyll index and normalized difference vegetation index, are calculated from visible and near-infrared band images for plant diagnosis in crop breeding and field management. The DJI P4 Multispectral drone combined with the Agisoft Metashape Structure from Motion/Multi View Stereo software is some of the most cost-effective equipment for creating high-resolution orthomosaic VI images. However, the manufacturer's procedure results in remarkable location estimation inaccuracy (average error: 3.27–3.45 cm) and alignment errors between spectral bands (average error: 2.80–2.84 cm). We developed alternative processing procedures to overcome these issues, and we achieved a higher positioning accuracy (average error: 1.32–1.38 cm) and better alignment accuracy between spectral bands (average error: 0.26–0.32 cm). The proposed procedure enables precise VI analysis, especially when using the green chlorophyll index for corn, and may help accelerate the application of remote sensing techniques to agriculture. Numéro de notice : A2022-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00064R2 Date de publication en ligne : 01/05/2022 En ligne : https://doi.org/10.14358/PERS.21-00064R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101379
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 5 (May 2022) . - pp 323 - 332[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 105-2022052 SL Revue Centre de documentation Revues en salle Disponible 105-2022051 SL Revue Centre de documentation Revues en salle Disponible A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance Type de document : Article/Communication Auteurs : Shuo Shi, Auteur ; Lu Xu, Auteur ; Wei Gong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] écosystème forestier
[Termes IGN] feuille (végétation)
[Termes IGN] modèle de transfert radiatif
[Termes IGN] processus gaussien
[Termes IGN] réflectance spectrale
[Termes IGN] régressionRésumé : (auteur) Forest leaf chlorophyll (Cab) and carotenoid (Cxc) are key functional indicators for the state of the forest ecosystem. Current machine learning models based on hyperspectral reflectance are widely applied to estimate leaf Cab and Cxc contents at leaf scale. However, these models have certain accuracy for non-independent datasets but have poor generalization for independent datasets when they are used to estimate leaf Cab and Cxc contents. This fact limits that hyperspectral remote sensing completely replaces destructive measurements for leaf Cab and Cxc contents. Thus, the development of an estimation model with high accuracy and satisfactory generalization is necessary. Convolutional neural networks (CNNs) have certain accuracy and generalization in many domains, and have the potential to solve above-mentioned problem. Therefore, this study developed a CNN using one-dimensional hyperspectral reflectance, which aimed to improve the model's accuracy and generalization in leaf Cab and Cxc content estimation at leaf scale. The proposed CNN was developed by three steps. First, in consideration of the correlation between leaf Cab and Cxc contents in natural leaves, 2500 physical data with leaf reflectance and corresponding Cab and Cxc contents were generated by leaf radiative transfer model and multivariable gaussian distribution function. Then, the proposed CNN was built by five strategies based on the architecture of the AlexNet. Finally, five-fold cross validation was performed with 70% of the physical data to determine the best strategy to develop the proposed CNN. These were executed to ensure the proposed CNN with the maximum accuracy and generalization. In addition, the accuracy and generalization of the proposed CNN were tested using a non-independent dataset and an independent dataset, respectively. The proposed CNN was also compared with back propagation neural network (BPNN), support vector regression (SVR) and gaussian process regression (GPR). Results showed that the best CNN could be developed with one input, five convolutional, three max-pooling and three fully-connected layers. Comprehensively considering the model's accuracy and generalization, the proposed CNN was the best model for leaf Cab and Cxc content estimation compared with BPNN, SVR and GPR. This study provides a development strategy of CNN estimation model using one-dimensional hyperspectral reflectance at leaf scale. The proposed CNN could further promote the practical application of hyperspectral remote sensing in leaf Cab and Cxc content estimation. Numéro de notice : A2022-231 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102719 Date de publication en ligne : 16/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100119
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102719[article]Fertilization modifies forest stand growth but not stand density: consequences for modelling stand dynamics in a changing climate / Hans Pretzsch in Forestry, an international journal of forest research, vol 95 n° 2 (April 2022)PermalinkSimultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 / Nima Pahlevan in Remote sensing of environment, vol 270 (March 2022)PermalinkAdaptation of the standardized vegetation optical depth index for satellite-based soil moisture / Juliette Raabe (2022)PermalinkDetection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements / Xue Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)PermalinkDrought in the forest breaks plant–fungi interactions / Andrzej Boczoń in European Journal of Forest Research, vol 140 n° 6 (December 2021)PermalinkVariation in downed deadwood density, biomass, and moisture during decomposition in a natural temperate forest / Tomas Přívětivý in Forests, vol 12 n° 10 (October 2021)PermalinkUsing electrical resistivity tomography to detect wetwood and estimate moisture content in silver fir (Abies alba Mill.) / Ludovic Martin in Annals of Forest Science, vol 78 n° 3 (September 2021)PermalinkA deep learning model using satellite ocean color and hydrodynamic model to estimate chlorophyll-a concentration / Daeyong Jin in Remote sensing, vol 13 n°10 (May-2 2021)PermalinkInversion of solar-induced chlorophyll fluorescence using polarization measurements of vegetation / Haiyan Yao in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)PermalinkAtmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters / Quinten Vanhellemont in Remote sensing of environment, Vol 256 (April 2020)Permalink