Descripteur
Documents disponibles dans cette catégorie (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods / Akhtar Jamil in Geocarto international, vol 36 n° 7 ([15/04/2021])
[article]
Titre : The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods Type de document : Article/Communication Auteurs : Akhtar Jamil, Auteur ; Bulent Bayram, Auteur Année de publication : 2021 Article en page(s) : pp 758 - 772 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de décalage moyen
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] Camellia sinensis
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] exploitation agricole
[Termes IGN] extraction de la végétation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] segmentation hiérarchique
[Termes IGN] TurquieRésumé : (Auteur) Rize district is an important tea production site in Turkey, which is known for high quality tea. Determining the temporal changes is very crucial from the viewpoint of agricultural management and protection of tea areas. In addition, delineation of tea gardens using photogrammetric evaluation techniques for a single orthoimage takes approximately 8 h of labour work, which is both costly and time-consuming process. To overcome these issues, a method is proposed for demarcation of tea gardens from high-resolution orthoimages. In this article, a hierarchical object-based segmentation using mean-shift (MS) and supervised machine learning (ML) methods are investigated for delineation of tea gardens. First, the MS algorithm was applied to partition the images into homogeneous segments (objects) and then from each segment, various spectral, spatial and textural features were extracted. Finally, four most widely used supervised ML classifiers, support vector machine (SVM), artificial neural network (ANN), random forest (RF), and decision trees (DTs), were selected for classification of objects into tea gardens and other types of trees. Photogrammetrically evaluated tea garden borders were taken as reference data to evaluate the performance of the proposed methods. The experiments showed that all selected supervised classifiers were effective for delineation of the tea gardens from high-resolution images. Numéro de notice : A2021-293 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1622597 Date de publication en ligne : 19/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1622597 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97349
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 758 - 772[article]