Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > zoologie > Arthropoda
Arthropoda |
Documents disponibles dans cette catégorie (67)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Sweet chestnut forests under black locust invasion threat and different management: An assessment of stand structure and biodiversity / Thomas Campagnaro in Forest ecology and management, vol 537 (June-1 2023)
[article]
Titre : Sweet chestnut forests under black locust invasion threat and different management: An assessment of stand structure and biodiversity Type de document : Article/Communication Auteurs : Thomas Campagnaro, Auteur ; Giovanni Trentanovi, Auteur ; Simone Lacopino, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120907 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Castanea sativa
[Termes IGN] forêt méditerranéenne
[Termes IGN] gestion forestière
[Termes IGN] insecte nuisible
[Termes IGN] Italie
[Termes IGN] orthoptère
[Termes IGN] Robinia pseudoacacia
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Sweet chestnut forests in Europe are impacted by management abandonment, non-native species invasions and diseases, among other factors. Understanding the effects of these factors is crucial for forecasting future biodiversity changes, as well as proposing appropriate planning and management strategies. We studied sweet chestnut (Castanea sativa Mill.) and black locust (Robinia pseudoacacia L.) dominated forests within three hilly landscapes (Euganean hills, Montello, and Berici hills) of north-eastern Italy. We surveyed 25 paired sweet chestnut and black locust dominated plots of 100 m2 representing coppice or over-aged stands. We collected and analysed data related to vascular plant composition and richness, soil physical features (moisture content, shear strength and penetration resistance), ammonia-oxidising archaea in the soil, and stand structure features. Composition of vascular plants differed significantly between the two forest types, without the influence of management regime. Soil characteristics did not change comparing forest types, management regimes and their interaction, except for soil moisture that was higher in coppice forests. Ammonia-oxidising archaea abundance was lower in sweet chestnut stands. Sweet chestnut and black locust forests have a similar stand structure. The management regime played a role in determining mean diameter, number of stems and deadwood volume. We suggest adopting a heterogeneous array of silviculture practices to achieve the highest variety of forest structures and plant composition in Mediterranean hilly landscapes, coupled with management practices aimed at black locust control. Numéro de notice : A2023-199 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.1016/j.foreco.2023.120907 Date de publication en ligne : 22/03/2023 En ligne : https://doi.org/10.1016/j.foreco.2023.120907 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103090
in Forest ecology and management > vol 537 (June-1 2023) . - n° 120907[article]GeoDanceHive: An operational hive for honeybees dances recording / Sylvain Galopin in Animals, vol 13 n° 7 (April-1 2023)
[article]
Titre : GeoDanceHive: An operational hive for honeybees dances recording Type de document : Article/Communication Auteurs : Sylvain Galopin , Auteur ; Guillaume Touya , Auteur ; Pierrick Aupinel, Auteur ; Freddie-Jeanne Richard, Auteur Année de publication : 2023 Projets : 3-projet - voir note / Article en page(s) : n° 1182 Note générale : bibliographie
This research was funded by the french ministries of Agriculture and Food Sovereignty (MASA—FCPR program), Ecological Transition and Territorial Cohesion (MTECT), Health and Prevention (MSP) and Higher Education and Research (MESR) and by the French national facility for institutional procurement of VHR satellite imagery (DINAMIS) and by the Lune de Miel® Fondation. This research was financially supported by the French Office for Biodiversity, on the fee envelope for diffuse pollution of the Écophyto II+ coord plan. F-J Richard, partners P. Aupinel and G. Touya for the DANCE project.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] alimentation
[Termes IGN] comportement
[Termes IGN] enregistrement de données
[Termes IGN] Hymenoptera (ordre)Résumé : (auteur) Honeybees are known for their ability to communicate about resources in their environment. They inform the other foragers by performing specific dance sequences according to the spatial characteristics of the resource. The purpose of our study is to provide a new tool for honeybees dances recording, usable in the field, in a practical and fully automated way, without condemning the harvest of honey. We designed and equipped an outdoor prototype of a production hive, later called “GeoDanceHive”, allowing the continuous recording of honeybees’ behavior such as dances and their analysis. The GeoDanceHive is divided into two sections, one for the colony and the other serving as a recording studio. The time record of dances can be set up from minutes to several months. To validate the encoding and sampling quality, we used an artificial feeder and visual decoding to generate maps with the vector endpoints deduced from the dance information. The use of the GeoDanceHive is designed for a wide range of users, who can meet different objectives, such as researchers or professional beekeepers. Thus, our hive is a powerful tool for honeybees studies in the field and could highly contribute to facilitating new research approaches and a better understanding landscape ecology of key pollinators. Numéro de notice : A2023-087 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ani13071182 En ligne : https://doi.org/10.3390/ani13071182 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102987
in Animals > vol 13 n° 7 (April-1 2023) . - n° 1182[article]Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models / Bruno Walter Pietzsch in European Journal of Forest Research, vol 142 n° 1 (February 2023)
[article]
Titre : Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models Type de document : Article/Communication Auteurs : Bruno Walter Pietzsch, Auteur ; Chris Wudel, Auteur ; Uta Berger, Auteur Année de publication : 2023 Article en page(s) : pp 129 - 144 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] chaîne de Markov
[Termes IGN] dépérissement
[Termes IGN] insecte nuisible
[Termes IGN] métamodèle
[Termes IGN] modèle de simulation
[Termes IGN] Picea abies
[Termes IGN] santé des forêts
[Termes IGN] Scolytinae
[Termes IGN] Suisse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Linked to climate change, drivers such as increased temperatures and decreased water availability affect forest health in complex ways by simultaneously weakening tree vitality and promoting insect pest activity. One major beneficiary of climate-induced changes is the European spruce bark beetle (Ips typographus). To improve the mechanistic understanding of climate change impacts on long-term beetle infestation risks, individual-based simulation models (IBM) such as the bark beetle dispersion model IPS-SPREADS have been proven as effective tools. However, the computational costs of IBMs limit their spatial scale of application. While these tools are best suitable to simulate bark beetle dynamics on the plot level, upscaling the process to larger areas is challenging. The larger spatial scale is, nevertheless, often required to support the selection of adequate management intervention. Here, we introduce a novel two-step approach to address this challenge: (1) we use the IPS-SPREADS model to simulate the bark beetle dispersal at a local scale by dividing the research area into 250 × 250 m grid cells; and (2) we then apply a metamodel framework to upscale the results to the landscape level. The metamodel is based on Markov chains derived from the infestation probabilities of IPS-SPREADS results and extended by considering neighbor interaction and spruce dieback of each focal cell. We validated the metamodel by comparing its predictions with infestations observed in 2017 and 2018 in the Saxon Switzerland national park, Germany, and tested sanitation felling as a measure to prevent potential further outbreaks in the region. Validation showed an improvement in predictions by introducing the model extension of beetle spreading from one cell to another. The metamodel forecasts indicated an increase in the risk of infestation for adjacent forest areas. In case of a beetle mass outbreak, sanitation felling intensities of 80 percent and above seem to mitigate further outbreak progression. Numéro de notice : A2023-139 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01512-1 Date de publication en ligne : 29/10/2022 En ligne : https://doi.org/10.1007/s10342-022-01512-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102694
in European Journal of Forest Research > vol 142 n° 1 (February 2023) . - pp 129 - 144[article]Perspectives: Critical zone perspectives for managing changing forests / Marissa Kopp in Forest ecology and management, vol 528 (January-15 2023)
[article]
Titre : Perspectives: Critical zone perspectives for managing changing forests Type de document : Article/Communication Auteurs : Marissa Kopp, Auteur ; Denise Alving, Auteur ; Taylor Blackman, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120627 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] changement climatique
[Termes IGN] écosystème forestier
[Termes IGN] Etats-Unis
[Termes IGN] géologie locale
[Termes IGN] gestion de l'eau
[Termes IGN] gestion forestière
[Termes IGN] incendie de forêt
[Termes IGN] Insecta
[Termes IGN] parasite (biologie)
[Termes IGN] planification
[Termes IGN] productivité
[Termes IGN] stress hydrique
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forest management is under intensifying ecological and societal pressures amid the current geological epoch, which some see becoming the Anthropocene. These pressures extend to temporal and physical scales typical of geology; however, integrating geological processes into forest management has lagged behind the inclusion of shorter-term and surficial ecosystem processes. As such, we examine the field of critical zone science for connections that translate geologic knowledge to forest management and planning. Earth’s critical zone is the thin near-surface zone spanning from the bottom of circulating groundwater to the top of the atmospheric boundary layer of forest canopies. We explore four case studies from regions of the U.S.A. to highlight how recent critical zone discoveries inform contemporary forest management challenges. Some examples of management-relevant research include mediation of the impacts of climate change on forest productivity across gradients in geology, aspect, and topography; the role of bedrock water storage on drought resistance; hydrology-vegetation interactions following pest outbreaks; and quantification of water partitioning and erosion following fire. The accelerated pace of critical zone discovery has been synchronous with increased availability of open-source data resources for forest managers to expand this framework in management and planning. Numéro de notice : A2023-034 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120627 Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120627 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102297
in Forest ecology and management > vol 528 (January-15 2023) . - n° 120627[article]Features predisposing forest to bark beetle outbreaks and their dynamics during drought / M. Müller in Forest ecology and management, vol 523 (November-1 2022)
[article]
Titre : Features predisposing forest to bark beetle outbreaks and their dynamics during drought Type de document : Article/Communication Auteurs : M. Müller, Auteur ; P.O. Olsson, Auteur ; Lars Eklundh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse des risques
[Termes IGN] canopée
[Termes IGN] caractérisation
[Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données météorologiques
[Termes IGN] humidité du sol
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Scolytinae
[Termes IGN] sécheresse
[Termes IGN] Suède
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Climate change is estimated to increase the risk of the bark beetle (Ips typographus L.) mass outbreaks in Norway Spruce (Picea abies (L.) Karst) forests. Habitats that are thermally suitable for bark beetles may expand, and an increase in the frequency and intensity of droughts can promote drought stress on host trees. Drought affects tree vigor and in unison with environmental features it influences the local predisposition risk of forest stands to bark beetle attacks. We aimed to study how various environmental features influence the risk of bark beetle attacks during a drought year and the following years with more normal weather conditions but with higher bark beetle populations. We included features representing local forest stand attributes, topography, soil type and wetness, the proximity of clear-cuts and previous bark beetle attacks, and a machine learning algorithm (random forest) was applied to study the variation of predisposition risk across a 48,600 km2 study area in SE Sweden. Forest stands with increased risk of bark beetle attack were distinguished with high accuracy both during drought and in normal weather conditions. The results show that during both study periods, spruce and mixed coniferous forests had elevated risk of attack, while forests with a mix of deciduous and coniferous trees had a lower risk. Forests with high average canopy height were strongly predisposed to bark beetle attacks. However, during the drought year risk was more similar between stands with lower and higher canopy height, suggesting that during drought periods younger trees can be predisposed to bark beetle attacks. The importance of soil moisture and position within the local landscape were highlighted as important features during the drought year. Identifying areas with increased risk, supported by information on how environmental features control the predisposition risk during drought, could aid adaptation strategies and forest management intervention efforts. We conclude that geospatial data and machine learning have the potential to further support the digitalization of the forest industry, facilitating development of methods capable to quantify importance and dynamics of
environmental features controlling the risk in local context. Corresponding methods could help to direct management actions more effectively and offer information for decision-making in changing climate.Numéro de notice : A2022-731 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120480 Date de publication en ligne : 07/09/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120480 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101687
in Forest ecology and management > vol 523 (November-1 2022) . - n° 120480[article]How large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps / Marion E. Caduff in Forest ecology and management, vol 514 (June-15 2022)PermalinkNatural disturbances risks in European boreal and temperate forests and their links to climate change : A review of modelling approaches / Joyce Machado Nunes Romeiro in Forest ecology and management, vol 509 (April-1 2022)PermalinkLandsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest / Ran Meng in Remote sensing of environment, vol 269 (February 2022)PermalinkUnsupervised denoising for satellite imagery using wavelet directional cycleGAN / Shaoyang Kong in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)PermalinkStreams and rural abandonment are related to the summer activity of the invasive pest Drosophila suzukii in protected European forests / Alberto Maceda-Veiga in Forest ecology and management, vol 485 ([01/04/2021])PermalinkEarly detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) / Langning Huo in Remote sensing of environment, Vol 255 (March 2021)PermalinkGeo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])PermalinkAmélioration de la gestion de l’implantation des ruches sur des propriétés régionales / Elliette Fize (2021)PermalinkQualification des données LiDAR GEDI pour le suivi de l’impact climatique sur la forêt de Südharz / Iris Jeuffrard (2021)PermalinkEvaluating the impact of declining tsetse fly (Glossina pallidipes) habitat in the Zambezi valley of Zimbabwe / Farai Matawa in Geocarto international, vol 35 n° 12 ([01/09/2020])Permalink