Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > instrument de mesure > instrument de mesurage de distances > télémètre > distancemètre > télémètre laser > Lidar > Global Ecosystem Dynamics Investigation lidar
Global Ecosystem Dynamics Investigation lidarVoir aussi |
Documents disponibles dans cette catégorie (11)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach / Martin Schwartz in Earth System Science Data, vol 15 n° inconnu (2023)
[article]
Titre : FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach Type de document : Article/Communication Auteurs : Martin Schwartz, Auteur ; Philippe Ciais, Auteur ; Aurélien de Truchis, Auteur ; Jérôme Chave, Auteur ; Catherine Ottle, Auteur ; Cédric Vega , Auteur ; Jean-Pierre Wigneron, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] données allométriques
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de surface de la canopée
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) The contribution of forests to carbon storage and biodiversity conservation highlights the need for accurate forest height and biomass mapping and monitoring. In France, forests are managed mainly by private owners and divided into small stands, requiring 10 to 50 m spatial resolution data to be correctly separated. Further, 35 % of the French forest territory is covered by mountains and Mediterranean forests which are managed very extensively. In this work, we used a deep-learning model based on multi-stream remote sensing measurements (NASA’s GEDI LiDAR mission and ESA’s Copernicus Sentinel 1 & 2 satellites) to create a 10 m resolution canopy height map of France for 2020 (FORMS-H). In a second step, with allometric equations fitted to the French National Forest Inventory (NFI) plot data, we created a 30 m resolution above-ground biomass density (AGBD) map (Mg ha-1) of France (FORMS-B). Extensive validation was conducted. First, independent datasets from Airborne Laser Scanning (ALS) and NFI data from thousands of plots reveal a mean absolute error (MAE) of 2.94 m for FORMS-H, which outperforms existing canopy height models. Second, FORMS-B was validated using two independent forest inventory datasets from the Renecofor permanent forest plot network and from the GLORIE forest inventory with MAE of 59.6 Mg ha-1 and 19.6 Mg.ha-1 respectively, providing greater performance than other AGBD products sampled over France. These results highlight the importance of coupling remote sensing technologies with recent advances in computer science to bring material insights to climate-efficient forest management policies. Additionally, our approach is based on open-access data having global coverage and a high spatial and temporal resolution, making the maps reproducible and easily scalable. FORMS products can be accessed from https://doi.org/10.5281/zenodo.7840108 (Schwartz et al., 2023). Numéro de notice : A2023-179 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/essd-2023-196 En ligne : https://doi.org/10.5194/essd-2023-196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103341
in Earth System Science Data > vol 15 n° inconnu (2023)[article]Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information / Shaohui Zhang in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information Type de document : Article/Communication Auteurs : Shaohui Zhang, Auteur ; Cédric Vega , Auteur ; Christine Deleuze, Auteur ; Sylvie Durrieu, Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Jean-Pierre Renaud , Auteur Année de publication : 2022 Projets : ARBRE / AgroParisTech (2007 -) Article en page(s) : n° 103072 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] gestion forestière
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation de la forêt
[Termes IGN] placette d'échantillonnage
[Termes IGN] Sologne (France)
[Termes IGN] variogramme
[Termes IGN] volume en boisRésumé : (auteur) The French National Forest Inventory provides detailed forest information up to large national and regional scales. Forest inventory for small areas of interest within a large population is equally important for decision making, such as for local forest planning and management purposes. However, sampling these small areas with sufficient ground plots is often not cost efficient. In response, small area estimation has gained increasing popularity in forest inventory. It consists of a set of techniques that enables predictions of forest attributes of subpopulation with the help of auxiliary information that compensates for the small field samples. Common sources of auxiliary information usually come from remote sensing technology, such as airborne laser scanning and satellite imagery. The newly launched NASA’s Global Ecosystem Dynamics Investigation (GEDI), a full waveform Lidar instrument, provides an unprecedented opportunity of collecting large-scale and dense forest sample plots given its sampling frequency and spatial coverage. However, the geolocation uncertainty associated with GEDI footprints create important challenges for their use for small area estimations. In this study, we designed a process that provides NFI measurements at plot level with GEDI auxiliary information from nearby footprints. We demonstrated that GEDI RH98 is equivalent to NFI dominant height at plot level. We stressed the importance of pairing NFI plots with nearby GEDI footprints, based on not only the distance in between but also their similarities, i.e., forest heights and forest types. Subsequently, these NFI-GEDI pairs were used for small area estimations following a two-phase sampling scheme. We showcased that, with an adequate sample size, small area estimation with GEDI auxiliary data can improve the accuracy of forest volume estimates. Numéro de notice : A2022-786 Affiliation des auteurs : LIF+Ext (2020- ) Autre URL associée : vers HAL Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.103072 Date de publication en ligne : 22/10/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103072 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101890
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103072[article]Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil / Adrián Pascual in Ecological Informatics, vol 70 (September 2022)
[article]
Titre : Using multi-temporal tree inventory data in eucalypt forestry to benchmark global high-resolution canopy height models. A showcase in Mato Grosso, Brazil Type de document : Article/Communication Auteurs : Adrián Pascual, Auteur ; Frederico Tupinambá-Simões, Auteur ; Tiago de Conto, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte forestière
[Termes IGN] Eucalyptus (genre)
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] incertitude des données
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Mato Grosso
[Termes IGN] modèle numérique de surface de la canopée
[Vedettes matières IGN] Inventaire forestierMots-clés libres : E. urograndis E. urophylla x E. grandis, E. urophylla and E. camaldulensis x E. grandis Résumé : (auteur) The global monitoring of forest structure worldwide is increasingly being supported by refined and enhanced satellite mission datasets. Forest canopy height is a global metric to characterise and monitor dynamics in forest ecosystems worldwide. Satellite mapping missions as NASA's Global Ecosystem Dynamics Investigation (GEDI) are creating opportunities to refine global forest canopy height models adding forest structural information to time-series satellite imagery. A recent global canopy height model presented by Lang et al., (2022) using GEDI and 10-m Sentinel-2 and the map from Potapov et al., (2020) using GEDI and Landsat are both tested in this study using multi-temporal tree-level data collected over eucalypt plantations in Brazil. Our results at plot-level showed Lang et al., (2022)’s estimates of canopy height came short compared to 2020 maximum and mean tree height records in the plots, 7.6 and 3.6 m, respectively, but adding CHM standard deviation improves the agreement of ground records for maximum tree height. Higher errors were computed for the plots in 2019 using the Potapov's 30-m CHM: 14.2 and 9.5 m, respectively. Averaged stand values were more similar between the three sources tested. We report improvement from the 30-m CHM to the 10-m, but still height saturation problems were observed when accounting for height differences in tall eucalypt trees. As more global products for forest height and biomass are becoming available to users, more validation exercises as presented in this study are needed to assess the suitability of CHM products to forestry needs, and facilitate the uptake and actionability of the next generation of global height and biomass products. We provide recommendations and insights on the use of GEDI laser data for global mapping and on the potential of commercial forestry areas to benchmark the accuracy of satellite mapping missions focusing on tree height estimation in the tropics. Numéro de notice : A2022-615 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ecoinf.2022.101748 En ligne : https://doi.org/10.1016/j.ecoinf.2022.101748 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101370
in Ecological Informatics > vol 70 (September 2022)[article]PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles / Nico Lang in Remote sensing of environment, vol 268 (January 2022)
[article]
Titre : Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles Type de document : Article/Communication Auteurs : Nico Lang, Auteur ; Nicolai Kalischek, Auteur ; John Armston, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n* 112760 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation bayesienne
[Termes IGN] forme d'onde
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsRésumé : (auteur) NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate mission whose goal is to advance our understanding of the role of forests in the global carbon cycle. While GEDI is the first space-based LIDAR explicitly optimized to measure vertical forest structure predictive of aboveground biomass, the accurate interpretation of this vast amount of waveform data across the broad range of observational and environmental conditions is challenging. Here, we present a novel supervised machine learning approach to interpret GEDI waveforms and regress canopy top height globally. We propose a probabilistic deep learning approach based on an ensemble of deep convolutional neural networks (CNN) to avoid the explicit modelling of unknown effects, such as atmospheric noise. The model learns to extract robust features that generalize to unseen geographical regions and, in addition, yields reliable estimates of predictive uncertainty. Ultimately, the global canopy top height estimates produced by our model have an expected RMSE of 2.7 m with low bias. Numéro de notice : A2022-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112760 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112760 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99495
in Remote sensing of environment > vol 268 (January 2022) . - n* 112760[article]High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach / Martin Schwartz (2022)PermalinkA CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms / Ibrahim Fayad in Remote sensing of environment, vol 265 (November 2021)PermalinkImproving GEDI footprint geolocation using a high resolution digital terrain model / Anouk Schleich (2021)PermalinkQualification des données LiDAR GEDI pour le suivi de l’impact climatique sur la forêt de Südharz / Iris Jeuffrard (2021)PermalinkUnit-level small area estimation of forest inventory with GEDI auxiliary information / Shaohui Zhang (2021)PermalinkUnit-level small area estimation of forest inventory with GEDI auxiliary information in France / Shaohui Zhang (2021)Permalink