Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > analyse multivariée > analyse factorielle > analyse de groupement > regroupement de pics de densité
regroupement de pics de densité |
Documents disponibles dans cette catégorie (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
An unsupervised framework for extracting multilane roads from OpenStreetMap / Kunkun Wu in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
[article]
Titre : An unsupervised framework for extracting multilane roads from OpenStreetMap Type de document : Article/Communication Auteurs : Kunkun Wu, Auteur ; Zhong Xie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2322 - 2344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] apprentissage non-dirigé
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] OpenStreetMap
[Termes IGN] polygone
[Termes IGN] regroupement de pics de densité
[Termes IGN] route
[Termes IGN] segment de droite
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Multilane roads are a set of approximately parallel line segments representing the same road in large-scale vector maps. They must be extracted first in cartographic generalization. There are numerous multilane roads in the easily accessible OpenStreetMap (OSM) dataset. For this dataset, polygon-based methods have achieved state-of-the-art performance. However, traditional polygon-based methods usually rely on manually labeled data, which means they are time-consuming and labor-intensive. To address this problem, an unsupervised framework for extracting multilane roads is proposed in this study. Road segments were first grouped to form the road polygons. A set of shape descriptors was formulated to reduce the dimensions of individual road polygons into conceptual points. Next, dimensional shape descriptors were standardized using logarithmic standardization. The density peaks clustering (DPC) algorithm was employed to classify these points. Then, cluster tags were identified manually to recognize which clusters represent multilane polygons. Finally, post-processing learning from the concept of assimilation is proposed to fill holes and remove islands. Experiments were conducted to extract multilane roads with datasets from three cities: Wuhan, Beijing and Munich. The experimental results show that the proposed framework effectively extracted multilane roads without any labels with accuracy levels comparable to those of supervised methods. Numéro de notice : A2022-797 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2107208 Date de publication en ligne : 05/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2107208 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101956
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022) . - pp 2322 - 2344[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible