Détail de l'auteur
Auteur D. Wolf |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Gravitational Viscoelastodynamics for a Hydrostatic Planet [Viscoélastodynamique gravitationnelle pour une planète hydrostatique] / D. Wolf (1997)
Titre : Gravitational Viscoelastodynamics for a Hydrostatic Planet [Viscoélastodynamique gravitationnelle pour une planète hydrostatique] Type de document : Thèse/HDR Auteurs : D. Wolf, Auteur Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 1997 Collection : DGK - C Sous-collection : Dissertationen num. 452 Importance : 96 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-3-7696-9495-6 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] élasticité
[Termes IGN] planèteIndex. décimale : 30.40 Géodésie physique Résumé : (Auteur) We consider a chemically and entropically stratified, compressible, rotating, fluid planet and investigate gravitational-viscoelastic perturbations of its hydrostatic initial state. Using the Lagrangian formulation and assuming infinitesimal perturbations, we deduce the appropriate incremental field equations and interface conditions of gravitational viscoelastodynamics in their material, material-local and local forms. The short-time asymptotes of the equations corre-spond to the incremental field equations and interface conditions of generalized gravitational elastodynamics, the long-time asymptotes agree with the incremental field equations and inter-face conditions of gravitational viscodynamics. Special cases are the field equations applying to perturbations of an isochemical, isentropic, compressible or incompressible planet.
As a heuristic example, we study Maxwell-viscoelastic perturbations, induced by 2D loads, of an isochemical, isentropic, incompressible, fluid half space with prescribed gravity field (Bous-sinesq-Cerruti problem). We deduce analytic solutions for the displacement and incremental stress components. Particular emphasis is placed on discriminating between the material and local incremental stresses. This distinction allows deeper insight into the physical significance of the solution.
A more complicated example are load-induced gravitational-viscoelastic perturbations of an isochemical, isentropic, incompressible, non-rotating, fluid sphere (Lame-Kelvin problem). The analytic solution to the incremental field equations and interface conditions governing this problem is deduced using the isopotential incremental pressure, measuring the increment of the hydrostatic initial pressure with respect to a particular equipotenttal surface. This formulation admits the decoupling of the equation for the (mechanical) momentum from the equation for the (gravitational) potential. In support of various applications, we compile transfer functions, impulse-response functions and Green's functions for the incremental field quantities of interest. The solution functions in the different solution domains are given explicitly for the Legendre degrees n ? 0, n = 1 and n > 2 and are valid for arbitrary types of generalized Maxwell viscoelasticity and arbitrary loads.Numéro de notice : 28037 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=63384 Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 28037-01 30.40 Livre Centre de documentation Géodésie Disponible 28037-02 30.40 Livre Centre de documentation Géodésie Disponible