Détail de l'autorité
ACCV 2016, 13th Asian Conference on Computer Vision 20/11/2016 24/11/2016 Taipei Taiwan Proceedings Springer
nom du congrès :
ACCV 2016, 13th Asian Conference on Computer Vision
début du congrès :
20/11/2016
fin du congrès :
24/11/2016
ville du congrès :
Taipei
pays du congrès :
Taiwan
site des actes du congrès :
|
Documents disponibles (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Titre : 3D watertight mesh generation with uncertainties from ubiquitous data Type de document : Article/Communication Auteurs : Laurent Caraffa , Auteur ; Mathieu Brédif , Auteur ; Bruno Vallet , Auteur Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2016 Collection : Lecture notes in Computer Science, ISSN 0302-9743 num. 10114 Projets : IQmulus / Métral, Claudine Conférence : ACCV 2016, 13th Asian Conference on Computer Vision 20/11/2016 24/11/2016 Taipei Taiwan Proceedings Springer Importance : pp 377 - 391 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme Graph-Cut
[Termes IGN] carte de confiance
[Termes IGN] distance de Hausdorff
[Termes IGN] incertitude géométrique
[Termes IGN] maille triangulaire
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de points
[Termes IGN] seuillage
[Termes IGN] surface imperméable
[Termes IGN] théorie de Dempster-ShaferRésumé : (auteur) In this paper, we propose a generic framework for watertight mesh generation with uncertainties that provides a confidence measure on each reconstructed mesh triangle. Its input is a set of vision-based or Lidar-based 3D measurements which are converted to a set of mass functions that characterize the level of confidence on the occupancy of the scene as occupied, empty or unknown based on Dempster-Shafer Theory. The output is a multi-label segmentation of the ambient 3D space expressing the confidence for each resulting volume element to be occupied or empty. While existing methods either sacrifice watertightness (local methods) or need to introduce a smoothness prior (global methods), we derive a per-triangle confidence measure that is able to gradually characterize when the resulting surface patches are certain due to dense and coherent measurements and when these patches are more uncertain and are mainly present to ensure smoothness and/or watertightness. The surface mesh reconstruction is formulated as a global energy minimization problem efficiently optimized with the α-expansion algorithm. We claim that the resulting confidence measure is a good estimate of the local lack of sufficiently dense and coherent input measurements, which would be a valuable input for the next-best-view scheduling of a complementary acquisition.
Beside the new formulation, the proposed approach achieves state-of-the-art results on surface reconstruction benchmark. It is robust to noise, manages high scale disparity and produces a watertight surface with a small Hausdorff distance in uncertainty area thanks to the multi-label formulation. By simply thresholding the result, the method shows a good reconstruction quality compared to local algorithms on high density data. This is demonstrated on a large scale reconstruction combining real-world datasets from airborne and terrestrial Lidar and on an indoor scene reconstructed from images.Numéro de notice : C2016-024 Affiliation des auteurs : LASTIG MATIS (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/978-3-319-54190-7_23 Date de publication en ligne : 12/03/2017 En ligne : http://doi.org/10.1007/978-3-319-54190-7_23 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84627 Documents numériques
peut être téléchargé
3D watertight mesh generation ... - pdf auteurAdobe Acrobat PDF