Détail de l'auteur
Auteur Bernhard P. Wrobel |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Photogrammetric computer vision / Wolfgang Förstner (2016)
Titre : Photogrammetric computer vision : statistics, geometry, orientation and reconstruction Type de document : Guide/Manuel Auteurs : Wolfgang Förstner, Auteur ; Bernhard P. Wrobel, Auteur Editeur : Springer Nature Année de publication : 2016 Collection : Geometry and computing, ISSN 1866-6795 num. 11 Importance : 816 p. Format : 21 x 28 cm ISBN/ISSN/EAN : 978-3-319-11549-8 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] aérotriangulation numérique
[Termes IGN] compensation par faisceaux
[Termes IGN] couple stéréoscopique
[Termes IGN] données maillées
[Termes IGN] données vectorielles
[Termes IGN] estimation statistique
[Termes IGN] géométrie
[Termes IGN] géométrie projective
[Termes IGN] image 2D
[Termes IGN] image 3D
[Termes IGN] incertitude géométrique
[Termes IGN] ligne (géométrie)
[Termes IGN] modèle de Gauss-Markov
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] plan (géométrie)
[Termes IGN] point
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] rotation d'objet
[Termes IGN] semis de points
[Termes IGN] transformation géométrique
[Termes IGN] variable aléatoire
[Termes IGN] vision par ordinateur
[Termes IGN] visualisation 3DIndex. décimale : 33.30 Photogrammétrie numérique Résumé : (Editeur) This textbook offers a statistical view on the geometry of multiple view analysis, required for camera calibration and orientation and for geometric scene reconstruction based on geometric image features. The authors have backgrounds in geodesy and also long experience with development and research in computer vision, and this is the first book to present a joint approach from the converging fields of photogrammetry and computer vision. Part I of the book provides an introduction to estimation theory, covering aspects such as Bayesian estimation, variance components, and sequential estimation, with a focus on the statistically sound diagnostics of estimation results essential in vision metrology. Part II provides tools for 2D and 3D geometric reasoning using projective geometry. This includes oriented projective geometry and tools for statistically optimal estimation and test of geometric entities and transformations and their relations, tools that are useful also in the context of uncertain reasoning in point clouds. Part III is devoted to modelling the geometry of single and multiple cameras, addressing calibration and orientation, including statistical evaluation and reconstruction of corresponding scene features and surfaces based on geometric image features. The authors provide algorithms for various geometric computation problems in vision metrology, together with mathematical justifications and statistical analysis, thus enabling thorough evaluations. The chapters are self-contained with numerous figures and exercises, and they are supported by an appendix that explains the basic mathematical notation and a detailed index. The book can serve as the basis for undergraduate and graduate courses in photogrammetry, computer vision, and computer graphics. It is also appropriate for researchers, engineers, and software developers in the photogrammetry and GIS industries, particularly those engaged with statistically based geometric computer vision methods. Note de contenu : 1. Introduction
1.1. Tasks for Photogrammetric Computer Vision
1.2. Modelling in Photogrammetric Computer Vision
1.3. The Book
1.4. On Notation
Part One - Statistics and Estimation
2. Probability Theory and Random Variables
2.1. Notions of Probability
2.2. Axiomatic Definition of Probability
2.3. Random Variables
2.4. Distributions
2.5. Moments
2.6. Quantiles of a Distribution
2.7. Functions of Random Variables
2.8. Stochastic Processes
2.9. Generating Random Numbers
2.10. Exercises
3. Testing
3.1. Principles of Hypothesis Testing
3.2. Testability of an Alternative Hypothesis
3.3. Common Tests
3.4. Exercises
4. Estimation
4.1. Estimation Theory
4.2. The Linear Gauss–Markov Model
4.3. Gauss–Markov Model with Constraints
4.4. The Nonlinear Gauss–Markov Model
4.5. Datum or Gauge Definitions and Transformations
4.6. Evaluation
4.7. Robust Estimation and Outlier Detection
4.8. Estimation with Implicit Functional Models
4.9. Methods for Closed Form Estimations
4.10. Estimation in Autoregressive Models
4.11. Exercises
Part two - Geometry
5. Homogeneous Representations of Points, Lines and Planes
5.1. Homogeneous Vectors and Matrices
5.2. Homogeneous Representations of Points and Lines in 2D
5.3. Homogeneous Representations in IPn
5.4. Homogeneous Representations of 3D Lines
5.5. On Plücker Coordinates for Points, Lines and Planes
5.6. The Principle of Duality
5.7. Conics and Quadrics
5.8. Normalizations of Homogeneous Vectors
5.9. Canonical Elements of Coordinate Systems
5.10. Exercises
6. Transformations
6.1. Structure of Projective Collineations
6.2. Basic Transformations
6.3. Concatenation and Inversion of Transformations
6.4. Invariants of Projective Mappings
6.5. Perspective Collineations
6.6. Projective Correlations
6.7. Hierarchy of Projective Transformations and Their Characteristics
6.8. Normalizations of Transformations
6.9. Conditioning
6.10. Exercises
7. Geometric Operations
7.1. Geometric Operations in 2D Space
7.2. Geometric Operations in 3D Space
7.3. Vector and Matrix Representations for Geometric Entities
7.4. Minimal Solutions for Conics and Transformations
7.5. Exercises
8. Rotations
8.1. Rotations in 3D
8.2. Concatenation of Rotations
8.3. Relations Between the Representations for Rotations
8.4. Rotations from Corresponding Vector Pairs
8.5. Exercises
9. Oriented Projective Geometry
9.1. Oriented Entities and Constructions
9.2. Transformation of Oriented Entities
9.3. Exercises
10. Reasoning with Uncertain Geometric Entities
10.1. Motivation
10.2. Representing Uncertain Geometric Elements
10.3. Propagation of the Uncertainty of Homogeneous Entities
10.4. Evaluating Statistically Uncertain Relations
10.5. Closed Form Solutions for Estimating Geometric Entities
10.6. Iterative Solutions for Maximum Likelihood Estimation
10.7. Exercises
Part Three - Orientation and Reconstruction
11. Overview
11.1. Scene, Camera, and Image Models
11.2. The Setup of Orientation, Calibration, and Reconstruction
11.3. Exercises
12. Geometry and Orientation of the Single Image
12.1. Geometry of the Single Image
12.2. Orientation of the Single Image
12.3. Inverse Perspective and 3D Information from a Single Image
12.4. Exercises
13. Geometry and Orientation of the Image Pair
13.1. Motivation
13.2 The Geometry of the Image Pair
13.3 Relative Orientation of the Image Pair
13.4. Triangulation
13.5. Absolute Orientation and Spatial Similarity Transformation
13.6. Orientation of the Image Pair and Its Quality
13.7. Exercises
14. Geometry and Orientation of the Image Triplet
14.1. Geometry of the Image Triplet
14.2. Relative Orientation of the Image Triplet
14.3. Exercises
15. Bundle Adjustment
15.1. Motivation for Bundle Adjustment and Its Tasks
15.2. Block Adjustment
15.3. Sparsity of Matrices, Free Adjustment and Theoretical Precision
15.4. Self-calibrating Bundle Adjustment
15.5. Camera Calibration
15.6. Outlier Detection and Approximate Values
15.7. View Planning
15.8. Exercises
16. Surface Reconstruction
16.1. Introduction
16.2. Parametric 21/2D Surfaces
16.3. Models for Reconstructing One-Dimensional Surface Profiles
16.4. Reconstruction of 21/2D Surfaces from 3D Point Clouds
16.5. Examples for Surface Reconstruction
16.6. Exercises
Appendix: Basics and Useful Relations from Linear AlgebraNuméro de notice : 22610 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Manuel Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82915 Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 22610-02 DEP-ECP Livre Marne-la-Vallée Dépôt en unité Exclu du prêt 22610-03 DEP-ELZ Livre Marne-la-Vallée Dépôt en unité Exclu du prêt Mathematical concepts used in photogrammetry : Coverage of fundamental concepts such as statistics and projective geometry / Wolfgang Förstner (2004)
Titre : Mathematical concepts used in photogrammetry : Coverage of fundamental concepts such as statistics and projective geometry Type de document : Chapitre/Contribution Auteurs : Wolfgang Förstner, Auteur ; Bernhard P. Wrobel, Auteur Editeur : Bethesda [Maryland - Etats-Unis] : American Society for Photogrammetry and Remote Sensing ASPRS Année de publication : 2004 Importance : pp 15 - 180 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] géométrie projective
[Termes IGN] photogrammétrie numériqueNuméro de notice : H2004-001 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Chapître / contribution DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96535 Implementation aspects of facets stereo-vision with some applications / Bernhard P. Wrobel (02/06/1987)