Détail de l'auteur
Auteur G.H. Mohammed |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Optical indices as bioindicators of forest condition from hyperspectral CASI data / Pablo J. Zarco-Tejada (31/05/1999)
contenu dans Remote sensing in the 21st century : economic and environmental applications / José Luis Casanova (2000)
Titre : Optical indices as bioindicators of forest condition from hyperspectral CASI data Type de document : Article/Communication Auteurs : Pablo J. Zarco-Tejada, Auteur ; J.R. Miller, Auteur ; G.H. Mohammed, Auteur ; T.L. Noland, Auteur ; P.H. Sampson, Auteur Editeur : Lisse et Amsterdam : Balkema (August Aimé) Année de publication : 31/05/1999 Conférence : EARSeL 1999, 19th symposium, Remote sensing in the 21st century : economic and environmental applications 31/05/1999 02/06/1999 Valladolid Espagne Importance : pp 517 - 522 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Acer (genre)
[Termes IGN] Compact airborne spectrographic imager
[Termes IGN] forêt
[Termes IGN] image CASI
[Termes IGN] image hyperspectrale
[Termes IGN] réflectance végétale
[Termes IGN] télédétection aérienneRésumé : (Auteur) This paper reports on progress made to link physiologically-based indicators to optical indices scaling-up from leaf level to the canopy through SAIL and Kuusk Canopy Reflectance Models (CR). Hyperspectral CASI data of 2m spatial resolution and 72 channels were collected in 1997 and 1998 deployments over twelve sites of Acer saccharum M. in Ontario (Canada). A field sampling campaign was carried out for biochemical analysis of leaf chlorophyll and carotenoid concentrations, and fluorescence along with leaf reflectance and transmittance. Leaf-level relationships obtained between optical indices and biochemical indicators were scaled-up to canopy level through CR models using input model parameters related to the canopy structure and viewing geometry at the time of data acquisition. The result is an algorithm which predicts leaf-level bioindicators from airborne hyperspectral imagery. A modeling study was carried out to determine the influence of CR on the four types of optical indices used in this study. Numéro de notice : C1999-049 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Communication Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=65815