Détail de l'auteur
Auteur Jean-Pierre Renaud
Commentaire :
ex IFN, Direction technique, Nancy (en 2008) - ONF (depuis 2009) - chercheur associé au LIF sur l'inventaire forestier multisource pour l’aménagement forestier
Autorités liées :
idHAL :
pas d'identifiant
ORCID :
|
Documents disponibles écrits par cet auteur (36)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information / Shaohui Zhang in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : Modelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information Type de document : Article/Communication Auteurs : Shaohui Zhang, Auteur ; Cédric Vega , Auteur ; Christine Deleuze, Auteur ; Sylvie Durrieu, Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Jean-Pierre Renaud , Auteur Année de publication : 2022 Projets : ARBRE / AgroParisTech (2007 -) Article en page(s) : n° 103072 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] gestion forestière
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de terrain
[Termes IGN] modélisation de la forêt
[Termes IGN] placette d'échantillonnage
[Termes IGN] Sologne (France)
[Termes IGN] variogramme
[Termes IGN] volume en boisRésumé : (auteur) The French National Forest Inventory provides detailed forest information up to large national and regional scales. Forest inventory for small areas of interest within a large population is equally important for decision making, such as for local forest planning and management purposes. However, sampling these small areas with sufficient ground plots is often not cost efficient. In response, small area estimation has gained increasing popularity in forest inventory. It consists of a set of techniques that enables predictions of forest attributes of subpopulation with the help of auxiliary information that compensates for the small field samples. Common sources of auxiliary information usually come from remote sensing technology, such as airborne laser scanning and satellite imagery. The newly launched NASA’s Global Ecosystem Dynamics Investigation (GEDI), a full waveform Lidar instrument, provides an unprecedented opportunity of collecting large-scale and dense forest sample plots given its sampling frequency and spatial coverage. However, the geolocation uncertainty associated with GEDI footprints create important challenges for their use for small area estimations. In this study, we designed a process that provides NFI measurements at plot level with GEDI auxiliary information from nearby footprints. We demonstrated that GEDI RH98 is equivalent to NFI dominant height at plot level. We stressed the importance of pairing NFI plots with nearby GEDI footprints, based on not only the distance in between but also their similarities, i.e., forest heights and forest types. Subsequently, these NFI-GEDI pairs were used for small area estimations following a two-phase sampling scheme. We showcased that, with an adequate sample size, small area estimation with GEDI auxiliary data can improve the accuracy of forest volume estimates. Numéro de notice : A2022-786 Affiliation des auteurs : LIF+Ext (2020- ) Autre URL associée : vers HAL Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.103072 Date de publication en ligne : 22/10/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103072 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101890
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103072[article]Multisource forest inventories: A model-based approach using k-NN to reconcile forest attributes statistics and map products / Ankit Sagar in ISPRS Journal of photogrammetry and remote sensing, vol 192 (October 2022)
[article]
Titre : Multisource forest inventories: A model-based approach using k-NN to reconcile forest attributes statistics and map products Type de document : Article/Communication Auteurs : Ankit Sagar , Auteur ; Cédric Vega , Auteur ; Olivier Bouriaud , Auteur ; Christian Piedallu, Auteur ; Jean-Pierre Renaud , Auteur Année de publication : 2022 Projets : LUE / Université de Lorraine, ARBRE / AgroParisTech (2007 -), DEEPSURF / Pironon, Jacques Article en page(s) : pp 175 - 188 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] classification barycentrique
[Termes IGN] données allométriques
[Termes IGN] données lidar
[Termes IGN] image Landsat-8
[Termes IGN] inventaire forestier national (données France)
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Forest map products are widely used and have taken benefit from progresses in the multisource forest inventory approaches, which are meant to improve the precision of forest inventory estimates at high spatial resolution. However, estimating errors of pixel-wise predictions remains difficult, and reconciling statistical outcomes with map products is still an open and important question. We address this problem using an original approach relying on a model-based inference framework and k-nearest neighbours (k-NN) models to produce pixel-wise estimations and related quality assessment. Our approach takes advantage of the resampling properties of a model-based estimator and combines it with geometrical convex-hull models to measure respectively the precision and accuracy of pixel predictions. A measure of pixel reliability was obtained by combining precision and accuracy. The study was carried out over a 7,694 km2 area dominated by structurally complex broadleaved forests in centre of France. The targeted forest attributes were growing stock volume, basal area and growing stock volume increment. A total of 819 national forest inventory plots were combined with auxiliary data extracted from a forest map, Landsat 8 images, and 3D point clouds from both airborne laser scanning and digital aerial photogrammetry. k-NN models were built independently for both 3D data sources. Both selected models included 5 auxiliary variables, and were generated using 5 neighbours, and most similar neighbours distance measure. The models showed relative root mean square error ranging from 35.7% (basal area, digital aerial photogrammetry) in calibration to 63.4% (growing stock volume increment, airborne laser scanning) in the validation set. At pixel level, we found that a minimum of 86.4% of the predictions were of high precision as their bootstrapped coefficient of variation fall below calibration’s relative root mean square error. The amount of extrapolation varied from 4.3% (digital aerial photogrammetry) to 6.3% (airborne laser scanning). A relationship was found between extrapolation and k-NN distance, opening new opportunities to correct extrapolation errors. At the population level, airborne laser scanning and digital aerial photogrammetry performed similarly, offering the possibility to use digital aerial photogrammetry for monitoring purposes. The proposed method provided consistent estimates of forest attributes and maps, and also provided spatially explicit information about pixel predictions in terms of precision, accuracy and reliability. The method therefore produced high resolution outputs, significant for either decision making or forest management purposes. Numéro de notice : A2022-629 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.016 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101495
in ISPRS Journal of photogrammetry and remote sensing > vol 192 (October 2022) . - pp 175 - 188[article]Characterizing the calibration domain of remote sensing models using convex hulls / Jean-Pierre Renaud in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
[article]
Titre : Characterizing the calibration domain of remote sensing models using convex hulls Type de document : Article/Communication Auteurs : Jean-Pierre Renaud , Auteur ; Ankit Sagar , Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Christine Deleuze, Auteur ; Cédric Vega , Auteur Année de publication : 2022 Projets : DEEPSURF / Pironon, Jacques, ARBRE / AgroParisTech (2007 -) Article en page(s) : n° 102939 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] données allométriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] erreur systématique
[Termes IGN] étalonnage de modèle
[Termes IGN] étalonnage des données
[Termes IGN] extrapolation
[Termes IGN] placette d'échantillonnageRésumé : (auteur) The ever-increasing availability of remote sensing data allows production of forest attributes maps, which are usually made using model-based approaches. These map products are sensitive to various bias sources, including model extrapolation. To identify, over a case study forest, the proportion of extrapolated predictions, we used a convex hull method applied to the auxiliary data space of an airborne laser scanning (ALS) flight. The impact of different sampling efforts was also evaluated. This was done by iteratively thinning a set of 487 systematic plots using nested sub-grids allowing to divide the sample by two at each level. The analysis were conducted for all alternative samples and evaluated against 56 independent validation plots. Residuals of the extrapolated validation plots were computed and examined as a function of their distance to the model calibration domain. Extrapolation was also characterized for the pixels of the area of interest (AOI) to upscale at population level. Results showed that the proportion of extrapolated pixels greatly reduced with an increasing sampling effort. It reached a plateau (ca. 20% extrapolation) with a sampling intensity of ca. 250-calibration plots. This contrasts with results on model’s root mean squared error (RMSE), which reached a plateau at a much lower sampling intensity. This result emphasizes the fact that with a low sampling effort, extrapolation risk remains high, even at a relatively low RMSE. For all attributes examined (i.e., stand density, basal area, and quadratic mean diameter) estimations were generally found to be biased for validation plots that were extrapolated. The method allows an easy identification of map pixels that are out of the calibration domain, making it an interesting tool to evaluate model transferability over an area of interest (AOI). It could also serve to compare “competing” models at a variable selection phase. From a model calibration perspective, it could serve a posteriori, to evaluate areas (in the auxiliary space) that merit further sampling efforts to improve model reliability. Numéro de notice : A2022-581 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2022.102939 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102939 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101341
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102939[article]A new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)
[article]
Titre : A new small area estimation algorithm to balance between statistical precision and scale Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Jean-Pierre Renaud , Auteur ; Ankit Sagar , Auteur ; Olivier Bouriaud , Auteur Année de publication : 2021 Projets : LUE / Université de Lorraine, DIABOLO / Packalen, Tuula, ARBRE/CHM-era / Jolly, Anne Article en page(s) : n° 102303 Note générale : bibliographie
This research was funded by The French Environmental Management Agency (ADEME), grant number 16-60-C0007. The methods and algorithms for processing photogrammetric data were supported by DIABOLO project from the European Union’s Horizon 2020 research and innovation program under grant agreement No 633464, as well as CHM-ERA project from the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). Ankit Sagar received the financial support of the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, through the project Impact DeepSurf.Langues : Anglais (eng) Descripteur : [Termes IGN] arbre BSP
[Termes IGN] capital sur pied
[Termes IGN] données auxiliaires
[Termes IGN] données de terrain
[Termes IGN] estimation bayesienne
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] réduction d'échelle
[Termes IGN] seuillage
[Termes IGN] surface terrière
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Combining national forest inventory (NFI) data with auxiliary information allows downscaling and improving the precision of NFI estimates for small domains, where normally too few field plots are available to produce reliable estimates. In most situations, small domains represent administrative units that could greatly vary in size and forested area. In small and poorly sampled domains, the precision of estimates often drop below expected standards.
To tackle this issue, we introduce a downscaling algorithm generating the smallest possible groups of domains satisfying prescribed sampling density and estimation error. The binary space partitioning algorithm recursively divides the population of domains in two groups while the prescribed precision conditions are fulfilled.
The algorithm was tested on two major forest attributes (i.e. growing stock and basal area) in an area of 7,500 km2 dominated by hardwood forests in the centre of France. The estimation domains consisted in 157 municipalities. The field data included 819 NFI plots surveyed during a 5 years period. The auxiliary data consisted in 48 metrics derived from a forest map, photogrammetric models and Landsat images. A model-assisted framework was used for estimation. For each forest attribute, the best model was selected using a best-subset approach using a Bayesian Information Criteria. The retained models explained 58% and 41% of the observed variance for the growing stocks and basal areas respectively. The performance of the algorithm was evaluated using a minimum of 3 NFI points per domain and estimation errors varying from 10 to 50%.
For a target estimation error set to 10%, the algorithm led to a limited number of estimation domains ( The algorithm provides a flexible estimation framework for small area estimation. The key advantages of the approach are relying on its capacity to produce estimations based on a preselected precision threshold and to produce results over the whole area of interest, avoiding areas without any estimates. The algorithm could also be used on any kind of polygon layers (not only administrative ones), provided that the field sampling design enable estimation. This makes the proposed algorithm a convenient tool notably for decision makers and forest managers.Numéro de notice : A2021-067 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2021.102303 Date de publication en ligne : 25/01/2021 En ligne : https://doi.org/10.1016/j.jag.2021.102303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96992
in International journal of applied Earth observation and geoinformation > vol 97 (May 2021) . - n° 102303[article]Convex hull: another perspective about model predictions and map derivatives from remote sensing data / Jean-Pierre Renaud (2021)
Titre : Convex hull: another perspective about model predictions and map derivatives from remote sensing data Type de document : Article/Communication Auteurs : Jean-Pierre Renaud , Auteur ; Ankit Sagar , Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Christine Deleuze, Auteur ; Cédric Vega , Auteur Editeur : Vienne [Autriche] : Technische Universität Wien Année de publication : 2021 Collection : Geowissenschaftliche Mitteilungen, ISSN 1811-8380 num. 104 Projets : ARBRE / AgroParisTech (2007 -) Conférence : SilviLaser 2021, 17th conference on Lidar Applications for Assessing and Managing Forest Ecosystems 28/09/2021 30/09/2021 Vienne + online Autriche open access proceedings Projets : DEEPSURF / Pironon, Jacques Importance : pp 71 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut non spatial
[Termes IGN] convexité
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] erreur systématique
[Termes IGN] modèle de simulation
[Termes IGN] modèle linéaireMots-clés libres : enveloppe convexe Résumé : (auteur) [introduction] In forest inventories as well as in the process of building models, obtaining an efficient sample is a central goal to reach precise estimates of forest attributes (Hawbaker et al. 2009, Frazer et al. 2011, Grafström et al. 2014, Saarela et al. 2015, Bouvier et al. 2019). In a model-based approach, a plots sample must cover adequately the variability of the considered forest attributes in order to minimise prediction error. Different strategies have been proposed to efficiently distribute the field sampling units in the auxiliary space of the remote sensing data (e.g. Hawbaker et al. 2009, Grafström et al. 2014). Some authors have proposed to stratify Airborne Laser Scanning data (ALS) to optimize sampling (Hawbaker et al. 2009, Frazer et al. 2011), and Maltamo et al. (2011) compared different field plot selection strategies in order to optimise models precision. Interestingly, White et al. (2013) applied convex hull approach to show uncovered forest structures by the field calibration sampling units, since large prediction errors could be associated with model extrapolations, resulting in potentially biased map derivatives. In this research, we use convex hull to identify the proportion of extrapolated pixels, computed their distance to the calibration domain and estimated bias associated to the linear model predictions on an ALS case study. Numéro de notice : C2021-030 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.34726/wim.1919 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.34726/wim.1919 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98997 High resolution mapping of forest resources and prediction reliability using multisource inventory approach / Ankit Sagar (2021)PermalinkImproving GEDI footprint geolocation using a high resolution digital terrain model / Anouk Schleich (2021)PermalinkUnit-level small area estimation of forest inventory with GEDI auxiliary information / Shaohui Zhang (2021)PermalinkUnit-level small area estimation of forest inventory with GEDI auxiliary information in France / Shaohui Zhang (2021)PermalinkIncreasing precision for French forest inventory estimates using the k-NN technique with optical and photogrammetric data and model-assisted estimators / Dinesh Babu Irulappa-Pillai-Vijayakumar in Remote sensing, vol 11 n° 8 (August 2019)PermalinkRegisTree: a registration algorithm to enhance forest inventory plot georeferencing / Maryem Fadili in Annals of Forest Science, vol 76 n° 2 (June 2019)PermalinkBridging the gap: toward a French MS-NFI for territories / Jean-Pierre Renaud (2019)PermalinkUn inventaire forestier multisource pour la gestion des territoires / Dinesh Babu Irulappa-Pillai-Vijayakumar (2018)PermalinkMéthodes d'inventaire multisource : améliorer la précision des estimations de l'IFN et atteindre l'échelle des territoires [diaporama] / Cédric Vega (2018)PermalinkStand-level wind damage can be assessed using diachronic photogrammetric canopy height models / Jean-Pierre Renaud in Annals of Forest Science, vol 74 n° 4 (December 2017)Permalink