Détail de l'auteur
Auteur Terje Gobakken |
Documents disponibles écrits par cet auteur (8)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models / Ana de Lera Garrido in Silva fennica, vol 56 n° 2 (April 2022)
[article]
Titre : Estimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models Type de document : Article/Communication Auteurs : Ana de Lera Garrido, Auteur ; Terje Gobakken, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 10695 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étalonnage
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] Norvège
[Termes IGN] parcelle forestière
[Termes IGN] placette d'échantillonnage
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Forest management inventories assisted by airborne laser scanner data rely on predictive models traditionally constructed and applied based on data from the same area of interest. However, forest attributes can also be predicted using models constructed with data external to where the model is applied, both temporal and geographically. When external models are used, many factors influence the predictions’ accuracy and may cause systematic errors. In this study, volume, stem number, and dominant height were estimated using external model predictions calibrated using a reduced number of up-to-date local field plots or using predictions from reparametrized models. We assessed and compared the performance of three different calibration approaches for both temporally and spatially external models. Each of the three approaches was applied with different numbers of calibration plots in a simulation, and the accuracy was assessed using independent validation data. The primary findings were that local calibration reduced the relative mean difference in 89% of the cases, and the relative root mean squared error in 56% of the cases. Differences between application of temporally or spatially external models were minor, and when the number of local plots was small, calibration approaches based on the observed prediction errors on the up-to-date local field plots were better than using the reparametrized models. The results showed that the estimates resulting from calibrating external models with 20 plots were at the same level of accuracy as those resulting from a new inventory. Numéro de notice : A2022-367 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10695 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.14214/sf.10695 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100589
in Silva fennica > vol 56 n° 2 (April 2022) . - n° 10695[article]Large-area inventory of species composition using airborne laser scanning and hyperspectral data / Hans Ole Ørka in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Large-area inventory of species composition using airborne laser scanning and hyperspectral data Type de document : Article/Communication Auteurs : Hans Ole Ørka, Auteur ; Endre H. Hansen, Auteur ; Michele Dalponte, Auteur ; Terje Gobakken, Auteur ; Erik Naesset, Auteur Année de publication : 2021 Article en page(s) : n° 10244 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] composition d'un peuplement forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Norvège
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] régression
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m2 collected over 350 km2 of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index. Numéro de notice : A2021-736 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10244 En ligne : https://doi.org/10.14214/sf.10244 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98695
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10244[article]Effects of terrain slope and aspect on the error of ALS-based predictions of forest attributes / Hans Ole Ørka in Forestry, an international journal of forest research, vol 91 n° 2 (April 2018)
[article]
Titre : Effects of terrain slope and aspect on the error of ALS-based predictions of forest attributes Type de document : Article/Communication Auteurs : Hans Ole Ørka, Auteur ; Ole Martin Bollandsås, Auteur ; Endre H. Hansen, Auteur ; Erik Naesset, Auteur ; Terje Gobakken, Auteur Année de publication : 2018 Article en page(s) : pp 225 - 237 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de variance
[Termes IGN] données dendrométriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de simulation
[Termes IGN] Norvège
[Termes IGN] pente
[Termes IGN] régression non linéaire
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Wall-to-wall forest management inventories with the area-based method using airborne laser scanner (ALS) data are operational in many countries. With this method, empirical relationships are established between ALS metrics and ground reference observations of forest attributes, and wall-to-wall predictions can be made over large areas. However, the prediction errors may be influenced by terrain slope and aspect because the properties of the ALS point cloud are dependent on these factors. Two datasets covering wide ranges of terrain slope and aspect, collected in the western part of Norway, were analysed. The first dataset represented sample plots from an ordinary operational forest management inventory and the second dataset were collected as an experimental dataset where clusters of sample plots were distributed on slopes with different inclinations. Six forest attributes were predicted using non-linear regression and the prediction errors were analysed using univariate- and multivariate analysis of variance. The results showed that slope and aspect affected the prediction errors, but that the effects were small in magnitude. Thus, the current study concludes that terrain effects seem to be negligible in operational forest inventories. Numéro de notice : A2018-652 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/forestry/cpx058 Date de publication en ligne : 30/01/2018 En ligne : https://doi.org/10.1093/forestry/cpx058 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93238
in Forestry, an international journal of forest research > vol 91 n° 2 (April 2018) . - pp 225 - 237[article]Value of airborne laser scanning and digital aerial photogrammetry data in forest decision making / Annika S. Kangas in Silva fennica, vol 52 n° 1 ([01/02/2018])
[article]
Titre : Value of airborne laser scanning and digital aerial photogrammetry data in forest decision making Type de document : Article/Communication Auteurs : Annika S. Kangas, Auteur ; Terje Gobakken, Auteur ; Stefano Puliti, Auteur ; Marius Hauglin, Auteur ; Erik Naesset, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] aide à la décision
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Norvège
[Termes IGN] qualité des données
[Termes IGN] volume en bois
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Airborne laser scanning (ALS) has been the main method for acquiring data for forest management planning in Finland and Norway in the last decade. Recently, digital aerial photogrammetry (DAP) has provided an interesting alternative, as the accuracy of stand-based estimates has been quite close to that of ALS while the costs are markedly smaller. Thus, it is important to know if the better accuracy of ALS is worth the higher costs for forest owners. In many recent studies, the value of forest inventory information in the harvest scheduling has been examined, for instance through cost-plus-loss analysis. Cost-plus-loss means that the quality of the data is accounted for in monetary terms through calculating the losses due to errors in the data in the forest management planning context. These costs are added to the inventory costs. In the current study, we compared the losses of ALS and DAP at plot level. According to the results, the data produced using DAP are as good as data produced using ALS from a decision making point of view, even though ALS is slightly more accurate. ALS is better than DAP only if the data will be used for more than 15 years before acquiring new data, and even then the difference is quite small. Thus, the increased errors in DAP do not significantly affect the results from a decision making point of view, and ALS and DAP data can be equally well recommended to the forest owners for management planning. The decision of which data to acquire, can thus be made based on the availability of the data on first hand and the costs of acquiring it on the second hand. Numéro de notice : A2018-498 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14214/sf.9923 Date de publication en ligne : 24/01/2018 En ligne : https://doi.org/10.14214/sf.9923 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91187
in Silva fennica > vol 52 n° 1 [01/02/2018][article]The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass / Ronald E. McRoberts in Annals of Forest Science, vol 73 n° 4 (December 2016)
[article]
Titre : The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass Type de document : Article/Communication Auteurs : Ronald E. McRoberts, Auteur ; Erik Naesset, Auteur ; Terje Gobakken, Auteur Année de publication : 2016 Article en page(s) : pp 839 - 847 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse diachronique
[Termes IGN] biomasse
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation statistique
[Termes IGN] forêt
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] Norvège
[Termes IGN] régression
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Key message : When areas of interest experience little change, remote sensing-based maps whose dates deviate from ground data can still substantially enhance precision. However, when change is substantial, deviations in dates reduce the utility of such maps for this purpose.
Context : Remote sensing-based maps are well-established as means of increasing the precision of estimates of forest inventory parameters. The general practice is to use maps whose dates correspond closely to the dates of ground data. However, as national forest inventories move to continuous inventories, deviations between map and ground data dates increase.
Aims : The aim was to assess the degree to which remote sensing-based maps can be used to increase the precision of estimates despite differences between map and ground data dates.
Methods : For study areas in the USA and Norway, maps were constructed for each of two dates, and model-assisted regression estimators were used to estimate inventory parameters using ground data whose dates differed by as much as 11 years from the map dates.
Results : For the Minnesota study area that had little change, 7-year differences in dates had little effect on the precision of estimates of proportion forest area. For the Norwegian study area that experienced considerable change, 11-year differences in dates had a detrimental effect on the precision of estimates of mean biomass per unit area.
Conclusions : The effects of differences in map and ground data dates were less important than temporal change in the study area.Numéro de notice : A2016--168 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s13595-015-0485-6 Date de publication en ligne : 12/05/2015 En ligne : https://doi.org/10.1007/s13595-015-0485-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87210
in Annals of Forest Science > vol 73 n° 4 (December 2016) . - pp 839 - 847[article]A functional regression model for inventories supported by aerial laser scanner data or photogrammetric point clouds / Magnussen, Steen in Remote sensing of environment, vol 184 (October 2016)PermalinkAssessing forest inventory information obtained from different inventory approaches and remote sensing data sources / Even Bergseng in Annals of Forest Science, vol 72 n° 1 (January 2015)PermalinkDeriving airborne laser scanning based computational canopy volume for forest biomass and allometry studies / Jari Vauhkonen in ISPRS Journal of photogrammetry and remote sensing, vol 96 (October 2014)Permalink