Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 67 n° 1Paru le : 01/01/2001 ISBN/ISSN/EAN : 0099-1112 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSpatial prediction of fire ignition probabilities: comparing logistic regression and neural networks / M.J. Perestrello De Vasconcelos in Photogrammetric Engineering & Remote Sensing, PERS, vol 67 n° 1 (January 2001)
[article]
Titre : Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks Type de document : Article/Communication Auteurs : M.J. Perestrello De Vasconcelos, Auteur ; S. Silva, Auteur ; Margarida Tomé, Auteur ; M. Alvim, Auteur ; J.M. Cardoso Pereira, Auteur Année de publication : 2001 Article en page(s) : pp 73 - 81 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] analyse spatiale
[Termes IGN] cartographie des risques
[Termes IGN] incendie de forêt
[Termes IGN] modélisation
[Termes IGN] Portugal
[Termes IGN] prévention des risques
[Termes IGN] prévision
[Termes IGN] réseau neuronal artificiel
[Termes IGN] risque naturel
[Termes IGN] système d'information géographiqueRésumé : (Auteur) The objective of this work was to develop and validate models to predict spatially distributed probabilities of ignition of wildland fires in central Portugal. The models were constructed by exploring relationships between ignition location/cause and values of geographical and environmental variables using logistic regression and neural networks. The conclusions are that the spatial patterns of fire ignition identified can be used for prediction, the spatial patterns are different for the different causes, the logistic models and the neural networks both reveal acceptable levels of predictive ability but the neural networks present better accuracy and robustness, the maps produced by the two methods are similar, and the information contained in the spatial position of ignition events can be used to gain predictive capability over an important phenomenon that is difficult to characterize and, for that reason, has not been included in most of the currently used fire danger estimation systems. Numéro de notice : A2001-084 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE/INFORMATIQUE Nature : Article DOI : sans En ligne : https://www.asprs.org/wp-content/uploads/pers/2001journal/january/2001_jan_73-81 [...] Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=21784
in Photogrammetric Engineering & Remote Sensing, PERS > vol 67 n° 1 (January 2001) . - pp 73 - 81[article]