Détail de l'autorité
ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2
nom du congrès :
ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow
début du congrès :
05/07/2021
fin du congrès :
09/07/2021
ville du congrès :
Nice Virtuel
pays du congrès :
France
site des actes du congrès :
|
Documents disponibles (9)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : AI4GEO: a data intelligence platform for 3D geospatial mapping Type de document : Article/Communication Auteurs : Pierre-Marie Brunet, Auteur ; Pierre Lassalle, Auteur ; Simon Baillarin, Auteur ; Bruno Vallet , Auteur ; Arnaud Le Bris , Auteur ; Gaëlle Romeyer , Auteur ; Guy Le Besnerais, Auteur ; Flora Weissgerber, Auteur ; Gilles Foulon, Auteur ; Vincent Gaudissart, Auteur ; Christophe Triquet, Auteur ; Michael Darques, Auteur ; Gwénaël Souillé, Auteur ; Laurent Gabet, Auteur ; Cedrik Ferrero, Auteur ; Thanh-Long Huynh, Auteur ; Emeric Lavergne, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : AI4GEO / Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 817 - 823 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] chaîne de traitement
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] jeu de données localisées
[Termes IGN] plateforme logicielle
[Termes IGN] segmentation sémantique
[Termes IGN] traitement de données localiséesRésumé : (auteur) The availability of 3D Geospatial information is a key issue for many expanding sectors such as autonomous vehicles, business intelligence and urban planning. Its production is now possible thanks to the abundance of available data (Earth observation satellite constellations, insitu data, …) but manual interventions are still needed to guarantee a high level of quality, which prevents mass production. New artificial intelligence and big data technologies adapted to 3D imagery can help to remove these obstacles. The AI4GEO project aims at developing an automatic solution for producing 3D geospatial information and new added-value services. This paper will first introduce AI4GEO initiative, context and overall objectives. It will then present the current status of the project and in particular it will focus on the innovative platform put in place to handle big 3D datasets for analytics needs and it will present the first results of 3D semantic segmentations and associated perspectives. Numéro de notice : C2021-015 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-817-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-817-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98067 An efficient representation of 3D buildings: application to the evaluation of city models / Oussama Ennafii (2021)
Titre : An efficient representation of 3D buildings: application to the evaluation of city models Type de document : Article/Communication Auteurs : Oussama Ennafii , Auteur ; Arnaud Le Bris , Auteur ; Florent Lafarge, Auteur ; Clément Mallet , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : 1-Pas de projet / Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 329 - 336 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bati
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées 3D
[Termes IGN] erreur systématique
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] objet géographique urbain
[Termes IGN] qualité du modèle
[Termes IGN] représentation géométrique
[Termes IGN] semis de pointsRésumé : (auteur) City modeling consists in building a semantic generalized model of the surface of urban objects. These could be seen as a special case of Boundary representation surfaces. Most modeling methods focus on 3D buildings with Very High Resolution overhead data (images and/or 3D point clouds). The literature abundantly addresses 3D mesh processing but frequently ignores the analysis of such models. This requires an efficient representation of 3D buildings. In particular, for them to be used in supervised learning tasks, such a representation should be scalable and transferable to various environments as only a few reference training instances would be available. In this paper, we propose two solutions that take into account the specificity of 3D urban models. They are based on graph kernels and Scattering Network. They are here evaluated in the challenging framework of quality evaluation of building models. The latter is formulated as a supervised multilabel classification problem, where error labels are predicted at building level. The experiments show for both feature extraction strategy strong and complementary results (F-score > 74% for most labels). Transferability of the classification is also examined in order to assess the scalability of the evaluation process yielding very encouraging scores (F-score > 86% for most labels). Numéro de notice : C2021-010 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-329-2021 Date de publication en ligne : 28/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2021-329-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98035 Assessment of combining convolutional neural networks and object based image analysis to land cover classification using Sentinel 2 satellite imagery (Tenes region, Algeria) / N. Zaabar (2021)
Titre : Assessment of combining convolutional neural networks and object based image analysis to land cover classification using Sentinel 2 satellite imagery (Tenes region, Algeria) Type de document : Article/Communication Auteurs : N. Zaabar, Auteur ; Simona Niculescu, Auteur ; M.K. Mihoubi, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 383 - 389 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Algérie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral méditerranéen
[Termes IGN] villeRésumé : (auteur) Land cover maps can provide valuable information for various applications, such as territorial monitoring, environmental protection, urban planning and climate change prevention. In this purpose, remote sensing based on image classification approaches undergoing a high revolution can be dedicated to land cover mapping tasks. Similarly, deep learning models are considerably applied in remote sensing applications; which can automatically learn features from large amounts of data. Prevalently, the Convolutional Neural Network (CNN), have been increasingly performed in image classification. The aim of this study is to apply a new approach to analyse land cover, and extract its features. Experiments carried out on a coastal town located in north-western Algeria (Ténès region). The study area is chosen because of its importance as a part of the national strategy to combat natural hazards, specifically floods. As well as, a simple CNN model with two hidden layers was constructed, combined with an Object-Based Image Analysis (OBIA). In this regard, a Sentinel-2 image was used, to perform the classification, using spectral index combinations. Furthermore, to compare the performance of the proposed approach, an OBIA based on machines learning algorithms mainly Random Forest (RF) and Support Vector Machine (SVM), was provided. Results of accuracy assessment of classification showed good values in terms of Overall accuracy and Kappa Index, which reach to 93.1% and 0.91, respectively. As a comparison, CNN-OBIA approach outperformed OBIA based on RF algorithm. Therefore, Final land cover maps can be used as a support tool in regional and national decisions. Numéro de notice : C2021-020 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Communication DOI : 10.5194/isprs-archives-XLIII-B3-2021-383-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-383-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98072 Benchmarking of convolutional neural network approaches for vegetation land cover mapping / Benjamin Carpentier (2021)
Titre : Benchmarking of convolutional neural network approaches for vegetation land cover mapping Type de document : Article/Communication Auteurs : Benjamin Carpentier, Auteur ; Antoine Masse , Auteur ; Emeric Lavergne, Auteur ; C. Sannier, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 915 - 922 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de la végétation
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image Sentinel-MSI
[Termes IGN] série temporelleRésumé : (auteur) Satellite Image Time Series (SITS) are becoming available at high spatial, spectral and temporal resolutions across the globe by the latest remote sensing sensors. These series of images can be highly valuable when exploited by classification systems to produce frequently updated and accurate land cover maps. The richness of spectral, spatial and temporal features in SITS is a promising source of data for developing better classification algorithms. However, machine learning methods such as Random Forests (RF), despite their fruitful application to SITS to produce land cover maps, are structurally unable to properly handle intertwined spatial, spectral and temporal dynamics without breaking the structure of the data. Therefore, the present work proposes a comparative study of various deep learning algorithms from the Convolutional Neural Network (CNN) family and evaluate their performance on SITS classification. They are compared to the processing chain coined iota2, developed by the CESBIO and based on a RF model. Experiments are carried out in an operational context using with sparse annotations from 290 labeled polygons. Less than 80 000 pixel time series belonging to 8 land cover classes from a year of Sentinel-2 monthly syntheses are used. Results show on a test set of 131 polygons that CNNs using 3D convolutions in space and time are more accurate than 1D temporal, stacked 2D and RF approaches. Best-performing models are CNNs using spatio-temporal features, namely 3D-CNN, 2D-CNN and SpatioTempCNN, a two-stream model using both 1D and 3D convolutions. Numéro de notice : C2021-017 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Communication DOI : 10.5194/isprs-archives-XLIII-B2-2021-915-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-915-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98069
Titre : Evaluating surface mesh reconstruction of open scenes Type de document : Article/Communication Auteurs : Yanis Marchand , Auteur ; Bruno Vallet , Auteur ; Laurent Caraffa , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Projets : 1-Pas de projet / Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 369 - 376 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] code source libre
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] évaluation
[Termes IGN] qualité du processus
[Termes IGN] reconstruction d'objet
[Termes IGN] scène urbaine
[Termes IGN] semis de pointsRésumé : (auteur) This paper addresses the evaluation of algorithms reconstructing a watertight surface from a point cloud acquired on an open scene. The objective is to set a rigorous protocol measuring the quality of the reconstruction and to propose a quality metric that is informative with respect to the various qualities that such an algorithm should have, and in particular its capacity to interpolate and extrapolate accurately. Our approach aims at being more informative and rigorous than previous works on this topic. In addition, we use publicly available data and our implementation is open-source. We argue that a rigorous evaluation of surface reconstruction of open scenes needs to be performed on synthetic data where a perfect continuous ground truth surface is available, so we developed our own LiDAR simulator of which we give a description in the present paper. Numéro de notice : C2021-014 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2021-369-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-369-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98065 Exploiting multi-camera constraints within bundle block adjustment: an experimental comparison / Eleonora Maset (2021)PermalinkInvestigation of Sentinel-1 time series for sensitivity to fern vegetation in an European temperate forest / Marlin Mueller (2021)PermalinkPermalinkPermalink