Détail de l'auteur
Auteur Xingfa Gu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data / Kun Jia in ISPRS Journal of photogrammetry and remote sensing, vol 93 (July 2014)
[article]
Titre : Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data Type de document : Article/Communication Auteurs : Kun Jia, Auteur ; Shunlin Liang, Auteur ; Ning Zhang, Auteur ; Xiangqin Wei, Auteur ; Xingfa Gu, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp. 49 - 55 Langues : Anglais (eng) Descripteur : [Termes IGN] changement d'occupation du sol
[Termes IGN] classification dirigée
[Termes IGN] fusion de données
[Termes IGN] image à basse résolution
[Termes IGN] occupation du sol
[Termes IGN] précision des données
[Termes IGN] représentation du temps
[Termes IGN] série temporelleRésumé : (Auteur) Land cover classification of finer resolution remote sensing data is always difficult to acquire high-frequency time series data which contains temporal features for improving classification accuracy. This paper proposed a method of land cover classification with finer resolution remote sensing data integrating temporal features extracted from time series coarser resolution data. The coarser resolution vegetation index data is first fused with finer resolution data to obtain time series finer resolution data. Temporal features are extracted from the fused data and added to improve classification accuracy. The result indicates that temporal features extracted from coarser resolution data have significant effect on improving classification accuracy of finer resolution data, especially for vegetation types. The overall classification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types have been improved. Numéro de notice : A2014-328 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.04.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.04.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=73677
in ISPRS Journal of photogrammetry and remote sensing > vol 93 (July 2014) . - pp. 49 - 55[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014071 RAB Revue Centre de documentation En réserve L003 Disponible