Détail de l'auteur
Auteur Licheng Jiao |
Documents disponibles écrits par cet auteur (8)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification / Zitong Wu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification Type de document : Article/Communication Auteurs : Zitong Wu, Auteur ; Biao Hou, Auteur ; Licheng Jiao, Auteur Année de publication : 2021 Article en page(s) : pp 1200 - 1213 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification contextuelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image radar moiréeRésumé : (auteur) Synthetic aperture radar (SAR) image classification is a fundamental research direction in image interpretation. With the development of various intelligent technologies, deep learning techniques are gradually being applied to SAR image classification. In this study, a new SAR classification algorithm known as the multiscale convolutional neural network with an autoencoder regularization joint contextual attention network (MCAR-CAN) is proposed. The MCAR-CAN has two branches: the autoencoder regularization branch and the context attention branch. First, autoencoder regularization is used for the reconstruction of the input to regularize the classification in the autoencoder regularization branch. Multiscale input and an asymmetric structure of the autoencoder branch cause the network more to be focused on classification than on reconstruction. Second, the attention mechanism is used to produce an attention map in which each attention weight corresponds to a context correlation in attention branch. The robust features are obtained by the attention mechanism. Finally, the features obtained by the two branches are spliced for classification. In addition, a new training strategy and a postprocessing method are designed to further improve the classification accuracy. Experiments performed on the data from three SAR images demonstrated the effectiveness and robustness of the proposed algorithm. Numéro de notice : A2021-113 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3004911 Date de publication en ligne : 07/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3004911 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96918
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1200 - 1213[article]Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery / Ruchan Dong in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery Type de document : Article/Communication Auteurs : Ruchan Dong, Auteur ; Dazhuan Xu, Auteur ; Jin Zhao, Auteur ; Licheng Jiao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 8534 - 8545 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] image à très haute résolution
[Termes IGN] régression
[Termes IGN] zone d'intérêtRésumé : (auteur) Small target detection is a challenging task in veryhigh-resolution (VHR) optical remote sensing imagery, because small targets occupy a minuscule number of pixels and are easily disturbed by backgrounds or occluded by others. Although current convolutional neural network (CNN)-based approaches perform well when detecting normal objects, they are barely suitable for detecting small ones. Two practical problems stand in their way. First, current CNN-based approaches are not specifically designed for the minuscule size of small targets (~15 or ~10 pixels in extent). Second, no well-established data sets include labeled small targets and establishing one from scratch is labor-intensive and time-consuming. To address these two issues, we propose an approach that combines Sig-NMS-based Faster R-CNN with transfer learning. Sig-NMS replaces traditional non-maximum suppression (NMS) in the stage of region proposal network and decreases the possibility of missing small targets. Transfer learning can effectively label remote sensing images by automatically annotating both object classes and object locations. We conduct an experiment on three data sets of VHR optical remote sensing images, RSOD, LEVIR, and NWPU VHR-10, to validate our approach. The results demonstrate that the proposed approach can effectively detect small targets in the VHR optical remote sensing images of about 10 × 10 pixels and automatically label small targets as well. In addition, our method presents better mean average precisions than other state-of-the-art methods: 1.5% higher when performing on the RSOD data set, 17.8% higher on the LEVIR data set, and 3.8% higher on NWPU VHR-10. Numéro de notice : A2019-595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2921396 Date de publication en ligne : 15/07/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2921396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94587
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8534 - 8545[article]Variational learning of mixture wishart model for PolSAR image classification / Qian Wu in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
[article]
Titre : Variational learning of mixture wishart model for PolSAR image classification Type de document : Article/Communication Auteurs : Qian Wu, Auteur ; Biao Hou, Auteur ; Zaidao Wen, Auteur ; Licheng Jiao, Auteur Année de publication : 2019 Article en page(s) : pp 141 - 154 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification
[Termes IGN] image AIRSAR
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] loi de Wishart
[Termes IGN] optimisation (mathématiques)
[Termes IGN] polarimétrie radarRésumé : (Auteur) The phase difference, amplitude product, and amplitude ratio between two polarizations are important discriminators for terrain classification, which derives a significant statistical-distribution-based polarimetric synthetic aperture radar (PolSAR) image classification. Traditionally, statistical-distribution-based PolSAR image classification models pay attention to two aspects: searching for a suitable distribution to model certain PolSAR image and a satisfactory solution for the corresponding distribution model with samples in every terrain. Usually, the described distribution form is too complicated to build. Besides, inaccurate parameter estimation may lead to poor classification performance for PolSAR image. In order to refrain from this phenomenon, a variational thought is adopted for the statistical-distribution-based PolSAR classification method in this paper. First, a mixture Wishart model is built to model the PolSAR image to replace the complicated distribution for the PolSAR image. Second, a learning-based method is suggested instead of inaccurate point estimation of parameters to determine the distribution for every class in the mixture Wishart model. Finally, the proposed learning-based mixture Wishart model will be built as a variational form to realize a parametric model for PolSAR image classification. In the experiments, it will be proved that the class centers are easier to distinguish among different terrains learned from the proposed variational model. In addition, a classification performance on the PolSAR image is superior to the original point estimation Wishart model on both visual classification result and accuracy. Numéro de notice : A2019-104 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2852633 Date de publication en ligne : 16/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2852633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92410
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 141 - 154[article]Pan-sharpening via deep metric learning / Yinghui Xing in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : Pan-sharpening via deep metric learning Type de document : Article/Communication Auteurs : Yinghui Xing, Auteur ; Min Wang, Auteur ; Shuyuan Yang, Auteur ; Licheng Jiao, Auteur Année de publication : 2018 Article en page(s) : pp 165 - 183 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Neighbors Embedding based pansharpening methods have received increasing interests in recent years. However, image patches do not strictly follow the similar structure in the shallow MultiSpectral (MS) and PANchromatic (PAN) image spaces, consequently leading to a bias to the pansharpening. In this paper, a new deep metric learning method is proposed to learn a refined geometric multi-manifold neighbor embedding, by exploring the hierarchical features of patches via multiple nonlinear deep neural networks. First of all, down-sampled PAN images from different satellites are divided into a large number of training image patches and are then grouped coarsely according to their shallow geometric structures. Afterwards, several Stacked Sparse AutoEncoders (SSAE) with similar structures are separately constructed and trained by these grouped patches. In the fusion, image patches of the source PAN image pass through the networks to extract features for formulating a deep distance metric and thus deriving their geometric labels. Then, patches with the same geometric labels are grouped to form geometric manifolds. Finally, the assumption that MS patches and PAN patches form the same geometric manifolds in two distinct spaces, is cast on geometric groups to formulate geometric multi-manifold embedding for estimating high resolution MS image patches. Some experiments are taken on datasets acquired by different satellites. The experimental results demonstrate that our proposed method can obtain better fusion results than its counterparts in terms of visual results and quantitative evaluations. Numéro de notice : A2018-493 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.016 Date de publication en ligne : 17/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91236
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 165 - 183[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Multilayer projective dictionary pair learning and sparse autoencoder for PolSAR image classification / Yanqiao Chen in IEEE Transactions on geoscience and remote sensing, vol 55 n° 12 (December 2017)
[article]
Titre : Multilayer projective dictionary pair learning and sparse autoencoder for PolSAR image classification Type de document : Article/Communication Auteurs : Yanqiao Chen, Auteur ; Licheng Jiao, Auteur ; Yangyang Li, Auteur ; Jin Zhao, Auteur Année de publication : 2017 Article en page(s) : pp 6683 - 6694 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage dirigé
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image radar moirée
[Termes IGN] Perceptron multicouche
[Termes IGN] polarimétrie radarRésumé : (Auteur) Polarimetric synthetic aperture radar (PolSAR) image classification is a vital application in remote sensing image processing. In general, PolSAR image classification is actually a high-dimensional nonlinear mapping problem. The methods based on sparse representation and deep learning have shown a great potential for PolSAR image classification. Therefore, a novel PolSAR image classification method based on multilayer projective dictionary pair learning (MDPL) and sparse auto encoder (SAE) is proposed in this paper. First, MDPL is used to extract features, and the abstract degree of the extracted features is high. Second, in order to get the nonlinear relationship between elements of feature vectors in an adaptive way, SAE is also used in this paper. Three PolSAR images are used to test the effectiveness of our method. Compared with several state-of-the-art methods, our method achieves very competitive results in PolSAR image classification. Numéro de notice : A2017-764 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2727067 En ligne : https://doi.org/10.1109/TGRS.2017.2727067 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88800
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 12 (December 2017) . - pp 6683 - 6694[article]Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection / Jie Feng in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)PermalinkChange-detection map learning using matching pursuit / Y. Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)PermalinkSAR change detection based on intensity and texture changes / Maoguo Gong in ISPRS Journal of photogrammetry and remote sensing, vol 93 (July 2014)Permalink