Détail de l'auteur
Auteur Dacheng Tao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral remote sensing image subpixel target detection based on supervised metric learning / Lefei Zhang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 8 Tome 2 (August 2014)
[article]
Titre : Hyperspectral remote sensing image subpixel target detection based on supervised metric learning Type de document : Article/Communication Auteurs : Lefei Zhang, Auteur ; Liangpei Zhang, Auteur ; Dacheng Tao, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 4955 - 4965 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] classification dirigée
[Termes IGN] classification pixellaire
[Termes IGN] détection de cible
[Termes IGN] image hyperspectraleRésumé : (Auteur) The detection and identification of target pixels such as certain minerals and man-made objects from hyperspectral remote sensing images is of great interest for both civilian and military applications. However, due to the restriction in the spatial resolution of most airborne or satellite hyperspectral sensors, the targets often appear as subpixels in the hyperspectral image (HSI). The observed spectral feature of the desired target pixel (positive sample) is therefore a mixed signature of the reference target spectrum and the background pixels spectra (negative samples), which belong to various land cover classes. In this paper, we propose a novel supervised metric learning (SML) algorithm, which can effectively learn a distance metric for hyperspectral target detection, by which target pixels are easily detected in positive space while the background pixels are pushed into negative space as far as possible. The proposed SML algorithm first maximizes the distance between the positive and negative samples by an objective function of the supervised distance maximization. Then, by considering the variety of the background spectral features, we put a similarity propagation constraint into the SML to simultaneously link the target pixels with positive samples, as well as the background pixels with negative samples, which helps to reject false alarms in the target detection. Finally, a manifold smoothness regularization is imposed on the positive samples to preserve their local geometry in the obtained metric. Based on the public data sets of mineral detection in an Airborne Visible/Infrared Imaging Spectrometer image and fabric and vehicle detection in a Hyperspectral Mapper image, quantitative comparisons of several HSI target detection methods, as well as some state-of-the-art metric learning algorithms, were performed. All the experimental results demonstrate the effectiveness of the proposed SML algorithm for hyperspectral target detection. Numéro de notice : A2014-434 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2286195 En ligne : https://doi.org/10.1109/TGRS.2013.2286195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=73971
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 8 Tome 2 (August 2014) . - pp 4955 - 4965[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014081B RAB Revue Centre de documentation En réserve L003 Disponible