Détail de l'auteur
Auteur Gemine Vivone |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detail injection-based deep convolutional neural networks for pansharpening / Liang-Jian Deng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
[article]
Titre : Detail injection-based deep convolutional neural networks for pansharpening Type de document : Article/Communication Auteurs : Liang-Jian Deng, Auteur ; Gemine Vivone, Auteur ; Cheng Jin, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6995 - 7010 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image à basse résolution
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] injection d'image
[Termes IGN] modèle non linéaire
[Termes IGN] pansharpening (fusion d'images)Résumé : (auteur) The fusion of high spatial resolution panchromatic (PAN) data with simultaneously acquired multispectral (MS) data with the lower spatial resolution is a hot topic, which is often called pansharpening. In this article, we exploit the combination of machine learning techniques and fusion schemes introduced to address the pansharpening problem. In particular, deep convolutional neural networks (DCNNs) are proposed to solve this issue. The latter is combined first with the traditional component substitution and multiresolution analysis fusion schemes in order to estimate the nonlinear injection models that rule the combination of the upsampled low-resolution MS image with the extracted details exploiting the two philosophies. Furthermore, inspired by these two approaches, we also developed another DCNN for pansharpening. This is fed by the direct difference between the PAN image and the upsampled low-resolution MS image. Extensive experiments conducted both at reduced and full resolutions demonstrate that this latter convolutional neural network outperforms both the other detail injection-based proposals and several state-of-the-art pansharpening methods. Numéro de notice : A2021-639 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3031366 En ligne : https://doi.org/10.1109/TGRS.2020.3031366 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98293
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 8 (August 2021) . - pp 6995 - 7010[article]Pansharpening: context-based generalized Laplacian pyramids by robust regression / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
[article]
Titre : Pansharpening: context-based generalized Laplacian pyramids by robust regression Type de document : Article/Communication Auteurs : Gemine Vivone, Auteur ; Stefano Marano, Auteur ; Jocelyn Chanussot, Auteur Année de publication : 2020 Article en page(s) : pp 6152 - 6167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] fonction de transfert de modulation
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] lissage de données
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] régression
[Termes IGN] transformation en ondelettesRésumé : (auteur) Pansharpening refers to the combination of panchromatic (PAN) and multispectral (MS) images, designed to obtain a fused product retaining the fine spatial resolution of the former and the high spectral content of the latter. One of the most popular and successful approaches to pansharpening is the method known as context-based generalized Laplacian pyramid, which requires as a key ingredient for the estimation of the so-called injection coefficients. In this article, we propose the adoption of robust techniques for the estimation of the injection coefficients and detection strategies to select the clusters for which robust regression is needed, providing a suitable balancing between fusion performance and computational burden. Experimental results conducted on five real data sets acquired by the sensors QuickBird, WorldView-3, and WorldView-4, show the superiority of the proposed method with respect to current state-of-the-art pansharpening techniques. Numéro de notice : A2020-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2974806 Date de publication en ligne : 04/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2974806 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95706
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6152 - 6167[article]
Titre : Remote sensing for target object detection and identification Type de document : Monographie Auteurs : Gemine Vivone, Éditeur scientifique ; Paolo Addesso, Éditeur scientifique ; Amanda Ziemann, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Importance : 336 p. Format : 17 x 25 cm ISBN/ISSN/EAN : 978-3-03928-333-0 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] image radar moirée
[Termes IGN] surveillance de l'urbanisation
[Termes IGN] surveillance écologiqueRésumé : (éditeur) Target object detection and identification are among the primary uses for a remote sensing system. This is crucial in several fields, including environmental and urban monitoring, hazard and disaster management, and defense and military. In recent years, these analyses have used the tremendous amount of data acquired by sensors mounted on satellite, airborne, and unmanned aerial vehicle (UAV) platforms. This book promotes papers exploiting different remote sensing data for target object detection and identification, such as synthetic aperture radar (SAR) imaging and multispectral and hyperspectral imaging. Several cutting-edge contributions, which provide examples of how to select of a technology or another depending on the specific application, will be detailed. Note de contenu : Editorial
1- Pixel tracking to estimate rivers water flow elevation using Cosmo-SkyMed synthetic aperture radar data
2- Flood distance algorithms and fault hidden danger recognition for transmission line towers based on SAR Images
3- Geospatial object detection on high resolution remote sensing imagery based on double multi-scale feature pyramid network
4- A novel multi-model decision fusion network for object detection in remote sensing images
5- Local region proposing for frame-based vehicle detection in satellite videos
6- Efficient object detection framework and hardware architecture for remote sensing images
7- Unsupervised saliency model with color Markov chain for oil tank detection
8- Affine-function transformation-based object matching for vehicle detection from unmanned aerial vehicle imagery
9- Hyperspectral anomaly detection via dictionary construction-based low-rank representation and adaptive weighting
10- Infrared small target detection based on non-convex optimization with Lp-Norm constraint
11- Infrared small target detection based on partial sum of the tensor nuclear norm
12- Infrared small-faint target detection using non-i.i.d. mixture of Gaussians and flux density
13- Mask sparse representation based on semantic features for thermal infrared target tracking
14- Infrared optical observability of an earth entry orbital test vehicle using ground-based remote sensorsNuméro de notice : 25885 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Monographie DOI : 10.3390/books978-3-03928-333-0 En ligne : https://doi.org/10.3390/books978-3-03928-333-0 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95781 Intersensor statistical matching for pansharpening : theoretical issues and practical solutions / Luciano Alparone in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Intersensor statistical matching for pansharpening : theoretical issues and practical solutions Type de document : Article/Communication Auteurs : Luciano Alparone, Auteur ; Andrea Garzelli, Auteur ; Gemine Vivone, Auteur Année de publication : 2017 Article en page(s) : pp 4682 - 4695 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] appariement d'histogramme
[Termes IGN] appariement d'images
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image multicapteur
[Termes IGN] image panchromatique
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] résolution multipleRésumé : (Auteur) In this paper, the authors investigate the statistical matching of the panchromatic (Pan) image to the multispectral (MS) bands, also known as the histogram matching, for the two main classes of pansharpening methods, i.e., those based on component substitution (CS) or spectral methods and those based on multiresolution analysis (MRA) or spatial methods. Also, hybrid methods combining CS with MRA, like the widespread additive wavelet luminance proportional (AWLP), are investigated. It is shown that all spectral, spatial, and hybrid methods must perform a dynamics matching of the enhancing Pan to the individual MS bands for MRA or a combination of them (the component that shall be substituted) for CS. For hybrid methods, the problem is more complex and both types of histogram matching may be suitable. Such an intersensor balance may be either explicit or implicitly performed by the detail-injection model, e.g., the popular projective and multiplicative injection models. An experimental setup exploiting IKONOS and WorldView-2 data sets demonstrates that a correct histogram matching is the key to attain extra performance from established methods. As a first result of this paper, the AWLP method has been revisited and its performance significantly improved by simply performing the histogram matching of Pan to the individual MS bands, rather than to the intensity component, thereby losing the original proportionality feature. Numéro de notice : A2017-502 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2697943 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2697943 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86447
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4682 - 4695[article]A critical comparison among pansharpening algorithms / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)
[article]
Titre : A critical comparison among pansharpening algorithms Type de document : Article/Communication Auteurs : Gemine Vivone, Auteur ; Luciano Alparone, Auteur ; Jocelyn Chanussot, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 2565 - 2586 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] analyse comparative
[Termes IGN] analyse multibande
[Termes IGN] analyse multirésolution
[Termes IGN] état de l'art
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image satellite
[Termes IGN] Matlab
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] qualité des donnéesRésumé : (Auteur) Pansharpening aims at fusing a multispectral and a panchromatic image, featuring the result of the processing with the spectral resolution of the former and the spatial resolution of the latter. In the last decades, many algorithms addressing this task have been presented in the literature. However, the lack of universally recognized evaluation criteria, available image data sets for benchmarking, and standardized implementations of the algorithms makes a thorough evaluation and comparison of the different pansharpening techniques difficult to achieve. In this paper, the authors attempt to fill this gap by providing a critical description and extensive comparisons of some of the main state-of-the-art pansharpening methods. In greater details, several pansharpening algorithms belonging to the component substitution or multiresolution analysis families are considered. Such techniques are evaluated through the two main protocols for the assessment of pansharpening results, i.e., based on the full- and reduced-resolution validations. Five data sets acquired by different satellites allow for a detailed comparison of the algorithms, characterization of their performances with respect to the different instruments, and consistency of the two validation procedures. In addition, the implementation of all the pansharpening techniques considered in this paper and the framework used for running the simulations, comprising the two validation procedures and the main assessment indexes, are collected in a MATLAB toolbox that is made available to the community. Numéro de notice : A2015-523 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2361734 En ligne : https://doi.org/10.1109/TGRS.2014.2361734 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77534
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 5 (mai 2015) . - pp 2565 - 2586[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015051 RAB Revue Centre de documentation En réserve L003 Disponible A class of cloud detection algorithms based on a MAP-MRF approach in space and time / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 52 n° 8 Tome 2 (August 2014)Permalink