Détail de l'auteur
Auteur Ruyi Feng |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network Type de document : Article/Communication Auteurs : Fengpeng Li, Auteur ; Ruyi Feng, Auteur ; Wei Han, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8077 - 8092 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtrage numérique d'image
[Termes IGN] image à haute résolution
[Termes IGN] jeu de données
[Termes IGN] segmentation sémantique
[Termes IGN] test statistiqueRésumé : (auteur) High-resolution remote sensing (HRRS) image scene classification has attracted an enormous amount of attention due to its wide application in a range of tasks. Due to the rapid development of deep learning (DL), models based on convolutional neural network (CNN) have made competitive achievements on HRRS image scene classification because of the excellent representation capacity of DL. The scene labels of HRRS images extremely depend on the combination of global information and information from key regions or locations. However, most existing models based on CNN tend only to represent the global features of images or overstate local information capturing from key regions or locations, which may confuse different categories. To address this issue, a key region or location capturing method called key filter bank (KFB) is proposed in this article, and KFB can retain global information at the same time. This method can combine with different CNN models to improve the performance of HRRS imagery scene classification. Moreover, for the convenience of practical tasks, an end-to-end model called KFBNet where KFB combined with DenseNet-121 is proposed to compare the performance with existing models. This model is evaluated on public benchmark data sets, and the proposed model makes better performance on benchmarks than the state-of-the-art methods. Numéro de notice : A2020-683 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2987060 Date de publication en ligne : 23/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2987060 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96208
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8077 - 8092[article]A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification / Wei Han in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification Type de document : Article/Communication Auteurs : Wei Han, Auteur ; Ruyi Feng, Auteur ; Lizhe Wang, Auteur ; Yafan Cheng, Auteur Année de publication : 2018 Article en page(s) : pp 23 - 43 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de sensibilité
[Termes IGN] apprentissage profond
[Termes IGN] classification semi-dirigée
[Termes IGN] réseau neuronal convolutif
[Termes IGN] scèneRésumé : (Auteur) High resolution remote sensing (HRRS) image scene classification plays a crucial role in a wide range of applications and has been receiving significant attention. Recently, remarkable efforts have been made to develop a variety of approaches for HRRS scene classification, wherein deep-learning-based methods have achieved considerable performance in comparison with state-of-the-art methods. However, the deep-learning-based methods have faced a severe limitation that a great number of manually-annotated HRRS samples are needed to obtain a reliable model. However, there are still not sufficient annotation datasets in the field of remote sensing. In addition, it is a challenge to get a large scale HRRS image dataset due to the abundant diversities and variations in HRRS images. In order to address the problem, we propose a semi-supervised generative framework (SSGF), which combines the deep learning features, a self-label technique, and a discriminative evaluation method to complete the task of scene classification and annotating datasets. On this basis, we further develop an extended algorithm (SSGA-E) and evaluate it by exclusive experiments. The experimental results show that the SSGA-E outperforms most of the fully-supervised methods and semi-supervised methods. It has achieved the third best accuracy on the UCM dataset, the second best accuracy on the WHU-RS, the NWPU-RESISC45, and the AID datasets. The impressive results demonstrate that the proposed SSGF and the extended method is effective to solve the problem of lacking an annotated HRRS dataset, which can learn valuable information from unlabeled samples to improve classification ability and obtain a reliable annotation dataset for supervised learning. Numéro de notice : A2018-489 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.11.004 Date de publication en ligne : 14/11/2017 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91225
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018) . - pp 23 - 43[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery / Ruyi Feng in ISPRS Journal of photogrammetry and remote sensing, vol 97 (November 2014)
[article]
Titre : Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery Type de document : Article/Communication Auteurs : Ruyi Feng, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2014 Article en page(s) : pp 9 – 24 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] traitement d'imageRésumé : (Auteur) Sparse unmixing models based on sparse representation theory and a sparse regression model have been successfully applied to hyperspectral remote sensing image unmixing. To better utilize the abundant spatial information and improve the unmixing accuracy, spatial sparse unmixing methods such as the non-local sparse unmixing (NLSU) approach have been proposed. Although the NLSU method utilizes non-local spatial information as the spatial regularization term and obtains a satisfactory unmixing accuracy, the final abundances are affected by the non-local neighborhoods and drift away from the true abundance values when the observed hyperspectral images have high noise levels. Furthermore, NLSU contains two regularization parameters which need to be appropriately set in real applications, which is a difficult task and often has a high computational cost. To solve these problems, an adaptive non-local Euclidean medians sparse unmixing (ANLEMSU) method is proposed to improve NLSU by replacing the non-local means total variation spatial consideration with the non-local Euclidean medians filtering approach. In addition, ANLEMSU utilizes a joint maximum a posteriori (JMAP) strategy to acquire the relationships between the regularization parameters and the estimated abundances, and achieves the fractional abundances adaptively, without the need to set the two regularization parameters manually. The experimental results using both simulated data and real hyperspectral images indicate that ANLEMSU outperforms the previous sparse unmixing algorithms and, hence, provides an effective option for the unmixing of hyperspectral remote sensing imagery. Numéro de notice : A2014-522 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.07.009 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.07.009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=74134
in ISPRS Journal of photogrammetry and remote sensing > vol 97 (November 2014) . - pp 9 – 24[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014111 RAB Revue Centre de documentation En réserve L003 Disponible