Détail de l'auteur
Auteur Michele Volpi |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
SemCity Toulouse: a benchmark for building instance segmentation in satellite images / Ribana Roscher in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-5-2020 (August 2020)
[article]
Titre : SemCity Toulouse: a benchmark for building instance segmentation in satellite images Type de document : Article/Communication Auteurs : Ribana Roscher, Auteur ; Michele Volpi, Auteur ; Clément Mallet , Auteur ; Lukas Drees, Auteur ; Jan Dirk Wegner, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 5, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 5 Article en page(s) : pp 109 - 116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] bati
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] instance
[Termes IGN] Toulouse
[Termes IGN] zone urbaine denseRésumé : (auteur) In order to reach the goal of reliably solving Earth monitoring tasks, automated and efficient machine learning methods are necessary for large-scale scene analysis and interpretation. A typical bottleneck of supervised learning approaches is the availability of accurate (manually) labeled training data, which is particularly important to train state-of-the-art (deep) learning methods. We present SemCity Toulouse, a publicly available, very high resolution, multi-spectral benchmark data set for training and evaluation of sophisticated machine learning models. The benchmark acts as test bed for single building instance segmentation which has been rarely considered before in densely built urban areas. Additional information is provided in the form of a multi-class semantic segmentation annotation covering the same area plus an adjacent area 3 times larger. The data set addresses interested researchers from various communities such as photogrammetry and remote sensing, but also computer vision and machine learning. Numéro de notice : A2020-503 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-5-2020-109-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-5-2020-109-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95639
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-5-2020 (August 2020) . - pp 109 - 116[article]Land cover mapping at very high resolution with rotation equivariant CNNs : Towards small yet accurate models / Diego Marcos in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
[article]
Titre : Land cover mapping at very high resolution with rotation equivariant CNNs : Towards small yet accurate models Type de document : Article/Communication Auteurs : Diego Marcos, Auteur ; Michele Volpi, Auteur ; Benjamin Kellenberger, Auteur ; Devis Tuia, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Bade-Wurtemberg (Allemagne)
[Termes IGN] carte d'occupation du sol
[Termes IGN] enrichissement sémantique
[Termes IGN] filtrage numérique d'image
[Termes IGN] image à ultra haute résolution
[Termes IGN] modèle numérique de surface
[Termes IGN] orthoimage
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) In remote sensing images, the absolute orientation of objects is arbitrary. Depending on an object’s orientation and on a sensor’s flight path, objects of the same semantic class can be observed in different orientations in the same image. Equivariance to rotation, in this context understood as responding with a rotated semantic label map when subject to a rotation of the input image, is therefore a very desirable feature, in particular for high capacity models, such as Convolutional Neural Networks (CNNs). If rotation equivariance is encoded in the network, the model is confronted with a simpler task and does not need to learn specific (and redundant) weights to address rotated versions of the same object class. In this work we propose a CNN architecture called Rotation Equivariant Vector Field Network (RotEqNet) to encode rotation equivariance in the network itself. By using rotating convolutions as building blocks and passing only the values corresponding to the maximally activating orientation throughout the network in the form of orientation encoding vector fields, RotEqNet treats rotated versions of the same object with the same filter bank and therefore achieves state-of-the-art performances even when using very small architectures trained from scratch. We test RotEqNet in two challenging sub-decimeter resolution semantic labeling problems, and show that we can perform better than a standard CNN while requiring one order of magnitude less parameters. Numéro de notice : A2018-491 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.021 Date de publication en ligne : 19/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91227
in ISPRS Journal of photogrammetry and remote sensing > vol 145 - part A (November 2018)[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018113 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images / Michele Volpi in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
[article]
Titre : Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images Type de document : Article/Communication Auteurs : Michele Volpi, Auteur ; Devis Tuia, Auteur Année de publication : 2018 Article en page(s) : pp 48 - 60 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] image aérienne
[Termes IGN] orthoimage
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) When approaching the semantic segmentation of overhead imagery in the decimeter spatial resolution range, successful strategies usually combine powerful methods to learn the visual appearance of the semantic classes (e.g. convolutional neural networks) with strategies for spatial regularization (e.g. graphical models such as conditional random fields). In this paper, we propose a method to learn evidence in the form of semantic class likelihoods, semantic boundaries across classes and shallow-to-deep visual features, each one modeled by a multi-task convolutional neural network architecture. We combine this bottom-up information with top-down spatial regularization encoded by a conditional random field model optimizing the label space across a hierarchy of segments with constraints related to structural, spatial and data-dependent pairwise relationships between regions. Our results show that such strategy provide better regularization than a series of strong baselines reflecting state-of-the-art technologies. The proposed strategy offers a flexible and principled framework to include several sources of visual and structural information, while allowing for different degrees of spatial regularization accounting for priors about the expected output structures. Numéro de notice : A2018-392 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.06.007 Date de publication en ligne : 05/07/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.06.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90826
in ISPRS Journal of photogrammetry and remote sensing > vol 144 (October 2018) . - pp 48 - 60[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018103 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Semisupervised transfer component analysis for domain adaptation in remote sensing image classification / Giona Matasci in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Semisupervised transfer component analysis for domain adaptation in remote sensing image classification Type de document : Article/Communication Auteurs : Giona Matasci, Auteur ; Michele Volpi, Auteur ; Mikhail Kanevski, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 3550 - 3564 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] classification à base de connaissances
[Termes IGN] classification automatique
[Termes IGN] découverte de connaissances
[Termes IGN] extraction automatique
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] occupation du solRésumé : (Auteur) In this paper, we study the problem of feature extraction for knowledge transfer between multiple remotely sensed images in the context of land-cover classification. Several factors such as illumination, atmospheric, and ground conditions cause radiometric differences between images of similar scenes acquired on different geographical areas or over the same scene but at different time instants. Accordingly, a change in the probability distributions of the classes is observed. The purpose of this work is to statistically align in the feature space an image of interest that still has to be classified (the target image) to another image whose ground truth is already available (the source image). Following a specifically designed feature extraction step applied to both images, we show that classifiers trained on the source image can successfully predict the classes of the target image despite the shift that has occurred. In this context, we analyze a recently proposed domain adaptation method aiming at reducing the distance between domains, Transfer Component Analysis, and assess the potential of its unsupervised and semisupervised implementations. In particular, with a dedicated study of its key additional objectives, namely the alignment of the projection with the labels and the preservation of the local data structures, we demonstrate the advantages of Semisupervised Transfer Component Analysis. We compare this approach with other both linear and kernel-based feature extraction techniques. Experiments on multi- and hyperspectral acquisitions show remarkable cross- image classification performances for the considered strategy, thus confirming its suitability when applied to remotely sensed images. Numéro de notice : A2015-319 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2377785 En ligne : https://doi.org/10.1109/TGRS.2014.2377785 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76570
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3550 - 3564[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible Semisupervised manifold alignment of multimodal remote sensing images / Devis Tuia in IEEE Transactions on geoscience and remote sensing, vol 52 n° 12 (December 2014)
[article]
Titre : Semisupervised manifold alignment of multimodal remote sensing images Type de document : Article/Communication Auteurs : Devis Tuia, Auteur ; Michele Volpi, Auteur ; Maxime Triolet, Auteur ; Gustau Camps-Valls, Auteur Année de publication : 2014 Article en page(s) : pp 7708 - 7720 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] alignement semi-dirigé
[Termes IGN] données multicapteurs
[Termes IGN] données multisources
[Termes IGN] données multitemporelles
[Termes IGN] graphe
[Termes IGN] image à très haute résolution
[Termes IGN] télédétection spatialeRésumé : (Auteur) We introduce a method for manifold alignment of different modalities (or domains) of remote sensing images. The problem is recurrent when a set of multitemporal, multisource, multisensor, and multiangular images is available. In these situations, images should ideally be spatially coregistered, corrected, and compensated for differences in the image domains. Such procedures require massive interaction of the user, involve tuning of many parameters and heuristics, and are usually applied separately. Changes of sensors and acquisition conditions translate into shifts, twists, warps, and foldings of the (typically nonlinear) manifolds where images lie. The proposed semisupervised manifold alignment (SS-MA) method aligns the images working directly on their manifolds and is thus not restricted to images of the same resolutions, either spectral or spatial. SS-MA pulls close together samples of the same class while pushing those of different classes apart. At the same time, it preserves the geometry of each manifold along the transformation. The method builds a linear invertible transformation to a latent space where all images are alike and reduces to solving a generalized eigenproblem of moderate size. We study the performance of SS-MA in toy examples and in real multiangular, multitemporal, and multisource image classification problems. The method performs well for strong deformations and leads to accurate classification for all domains. A MATLAB implementation of the proposed method is provided at http://isp. uv.es/code/ssma.htm. Numéro de notice : A2014-638 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2317499 En ligne : https://doi.org/10.1109/TGRS.2014.2317499 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75063
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 12 (December 2014) . - pp 7708 - 7720[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014121 RAB Revue Centre de documentation En réserve L003 Disponible Memory-based cluster sampling for remote sensing image classification / Michele Volpi in IEEE Transactions on geoscience and remote sensing, vol 50 n° 8 (August 2012)Permalink