Détail de l'auteur
Auteur Leyuan Fang |
Documents disponibles écrits par cet auteur (11)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral image classification with squeeze multibias network / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
[article]
Titre : Hyperspectral image classification with squeeze multibias network Type de document : Article/Communication Auteurs : Leyuan Fang, Auteur ; Guangyun Liu, Auteur ; Shutao Li, Auteur ; Pedram Ghamisi, Auteur ; Jon Atli Benediktsson, Auteur Année de publication : 2019 Article en page(s) : pp 1291 - 1301 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] erreur systématique
[Termes IGN] image hyperspectraleRésumé : (Auteur) A convolutional neural network (CNN) has recently demonstrated its outstanding capability for the classification of hyperspectral images (HSIs). Typical CNN-based methods usually adopt image patches as inputs to the network. However, a fixed-size image patch in HSI with complex spatial contexts may contain multiple ground objects of different classes, which will deteriorate the classification performance of the CNN. In addition, traditional convolutional layers adopted in the CNN have a huge amount of parameters needed to be tuned, which will cause high computational cost. To address the above-mentioned issues, a novel squeeze multibias network (SMBN) is proposed for HSI classification. Specifically, the proposed SMBN first introduces the multibias module (MBM), which incorporates multibias into the rectified linear unit layers. The MBM can decouple the feature maps of input patches into multiple response maps (corresponding to different ground objects) and adaptively select the meaningful maps for classification. Furthermore, the proposed SMBN replaces the traditional convolutional layer with a squeeze convolution module, which can greatly reduce the number of parameters in the network, thus saving the running time, while still maintaining high classification accuracy. Experimental results on three real HSIs demonstrate the superiority of the proposed SMBN method over several state-of-the-art classification approaches. Numéro de notice : A2019-113 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2865953 Date de publication en ligne : 13/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2865953 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92453
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1291 - 1301[article]Remote sensing scene classification using multilayer stacked covariance pooling / Nanjun He in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
[article]
Titre : Remote sensing scene classification using multilayer stacked covariance pooling Type de document : Article/Communication Auteurs : Nanjun He, Auteur ; Leyuan Fang, Auteur ; Shutao Li, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 6899 - 6910 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de covariance
[Termes IGN] représentation cartographique
[Termes IGN] scèneRésumé : (auteur) This paper proposes a new method, called multilayer stacked covariance pooling (MSCP), for remote sensing scene classification. The innovative contribution of the proposed method is that it is able to naturally combine multilayer feature maps, obtained by pretrained convolutional neural network (CNN) models. Specifically, the proposed MSCP-based classification framework consists of the following three steps. First, a pretrained CNN model is used to extract multilayer feature maps. Then, the feature maps are stacked together, and a covariance matrix is calculated for the stacked features. Each entry of the resulting covariance matrix stands for the covariance of two different feature maps, which provides a natural and innovative way to exploit the complementary information provided by feature maps coming from different layers. Finally, the extracted covariance matrices are used as features for classification by a support vector machine. The experimental results, conducted on three challenging data sets, demonstrate that the proposed MSCP method can not only consistently outperform the corresponding single-layer model but also achieve better classification performance than other pretrained CNN-based scene classification methods. Numéro de notice : A2018-552 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2845668 Date de publication en ligne : 09/07/2018 En ligne : http://dx.doi.org/10.1109/TGRS.2018.2845668 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91640
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 12 (December 2018) . - pp 6899 - 6910[article]From subpixel to superpixel : a novel fusion framework for hyperspectral image classification / Ting Lu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : From subpixel to superpixel : a novel fusion framework for hyperspectral image classification Type de document : Article/Communication Auteurs : Ting Lu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4398 - 4411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] combinaison linéaire
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Supervised classification of hyperspectral images (HSI) is a very challenging task due to the existence of noisy and mixed spectral characteristics. Recently, the widely developed spectral unmixing techniques offer the possibility to extract spectral mixture information at a subpixel level, which can contribute to the categorization of seriously mixed spectral pixels. Besides, it has been demonstrated that the discrimination between different materials will be improved by integrating the geometry and structure information, which can be derived from the variance between neighboring pixels. Furthermore, by incorporating the spatial context, the superpixel-based spectral-spatial similarity information can be used to smooth classification results in homogeneous regions. Therefore, a novel fusion framework for HSI classification that combines subpixel, pixel, and superpixel-based complementary information is proposed in this paper. Here, both feature fusion and decision fusion schemes are introduced. For the feature fusion scheme, the first step is to extract subpixel-level, pixel-level, and superpixel-level features from HSI, respectively. Then, the multiple feature-induced kernels are fused to form one composite kernel, which is incorporated with a support vector machine (SVM) classifier for label assignment. For the decision fusion scheme, class probabilities based on three different features are estimated by the probabilistic SVM classifier first. Then, the class probabilities are adaptively fused to form a probabilistic decision rule for classification. Experimental results tested on different real HSI images can demonstrate the effectiveness of the proposed fusion schemes in improving discrimination capability, when compared with the classification results relied on each individual feature. Numéro de notice : A2017-654 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691906 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691906 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86439
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4398 - 4411[article]Adaptive spectral–spatial compression of hyperspectral image with sparse representation / Wei Fu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)
[article]
Titre : Adaptive spectral–spatial compression of hyperspectral image with sparse representation Type de document : Article/Communication Auteurs : Wei Fu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; Jon Atli Benediktsson, Auteur Année de publication : 2017 Article en page(s) : pp 671 - 682 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] codage
[Termes IGN] compression d'image
[Termes IGN] image hyperspectrale
[Termes IGN] pixel
[Termes IGN] représentation parcimonieuse
[Termes IGN] zone homogèneRésumé : (Auteur) Sparse representation (SR) can transform spectral signatures of hyperspectral pixels into sparse coefficients with very few nonzero entries, which can efficiently be used for compression. In this paper, a spectral-spatial adaptive SR (SSASR) method is proposed for hyperspectral image (HSI) compression by taking advantage of the spectral and spatial information of HSIs. First, we construct superpixels, i.e., homogeneous regions with adaptive sizes and shapes, to describe HSIs. Since homogeneous regions usually consist of similar pixels, pixels within each superpixel will be similar and share similar spectral signatures. Then, the spectral signatures of each superpixel can be simultaneously coded in the SR model to exploit their joint sparsity. Since different superpixels generally have different performances of SR, their rate-distortion performances in the sparse coding will be different. To achieve the best possible overall rate-distortion performance, an adaptive coding scheme is introduced to adaptively assign distortions to superpixels. Finally, the obtained sparse coefficients are quantized and entropy coded and constitute the final bitstream with the coded superpixel map. The experimental results over several HSIs show that the proposed SSASR method outperforms some state-of-the-art HSI compression methods in terms of the rate-distortion and spectral fidelity performances. Numéro de notice : A2017-141 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2613848 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2613848 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84629
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 2 (February 2017) . - pp 671 - 682[article]Spectral–spatial adaptive sparse representation for hyperspectral image denoising / Ting Lu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
[article]
Titre : Spectral–spatial adaptive sparse representation for hyperspectral image denoising Type de document : Article/Communication Auteurs : Ting Lu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 373 - 385 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] bruit blanc
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectraleRésumé : (Auteur) In this paper, a novel spectral-spatial adaptive sparse representation (SSASR) method is proposed for hyperspectral image (HSI) denoising. The proposed SSASR method aims at improving noise-free estimation for noisy HSI by making full use of highly correlated spectral information and highly similar spatial information via sparse representation, which consists of the following three steps. First, according to spectral correlation across bands, the HSI is partitioned into several nonoverlapping band subsets. Each band subset contains multiple continuous bands with highly similar spectral characteristics. Then, within each band subset, shape-adaptive local regions consisting of spatially similar pixels are searched in spatial domain. This way, spectral-spatial similar pixels can be grouped. Finally, the highly correlated and similar spectral-spatial information in each group is effectively used via the joint sparse coding, in order to generate better noise-free estimation. The proposed SSASR method is evaluated by different objective metrics in both real and simulated experiments. The numerical and visual comparison results demonstrate the effectiveness and superiority of the proposed method. Numéro de notice : A2016-073 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2457614 En ligne : https://doi.org/10.1109/TGRS.2015.2457614 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79841
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 1 (January 2016) . - pp 373 - 385[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016011 SL Revue Centre de documentation Revues en salle Disponible Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)PermalinkSpectral–spatial classification of hyperspectral images with a superpixel-based discriminative sparse model / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)PermalinkExtended random walker-based classification of hyperspectral images / Xudong Kang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)PermalinkSpectral–spatial hyperspectral image classification via multiscale adaptive sparse representation / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 12 (December 2014)PermalinkAutomatic extraction of road markings from mobile Lidar point clouds / B. Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 4 (April 2012)PermalinkA comparison of methods to measure the modulation transfer function of aerial survey lens systems from the image structures / Leyuan Fang in Photogrammetric Engineering & Remote Sensing, PERS, vol 54 n° 1 (january 1988)Permalink