Détail de l'auteur
Auteur Zhaohui Xue |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spectral–spatial classification of hyperspectral data via morphological component analysis-based image separation / Zhaohui Xue in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)
[article]
Titre : Spectral–spatial classification of hyperspectral data via morphological component analysis-based image separation Type de document : Article/Communication Auteurs : Zhaohui Xue, Auteur ; Jun Li, Auteur ; Liang Cheng, Auteur ; Peijun Du, Auteur Année de publication : 2015 Article en page(s) : pp 70 - 84 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes indépendantes
[Termes IGN] classification spectrale
[Termes IGN] image hyperspectraleRésumé : (Auteur) This paper presents a new spectral-spatial classification method for hyperspectral images via morphological component analysis-based image separation rationale in sparse representation. The method consists of three main steps. First, the high-dimensional spectral domain of hyperspectral images is reduced into a low-dimensional feature domain by using minimum noise fraction (MNF). Second, the proposed separation method is acted on each features to generate the morphological components (MCs), i.e., the content and texture components. To this end, the dictionaries for these two components are built by using local curvelet and Gabor wavelet transforms within the randomly chosen image partitions. Then, sparse coding of one of the MCs and update of the associated dictionary are sequentially performed with the other one fixed. To better direct the separation process, an undecimated Haar wavelet with soft threshold is performed for the content component to make it smooth. This process is repeated until some stopping criterion is met. Finally, a support vector machine is adopted to obtain the classification maps based on the MCs. The experimental results with hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed scheme provides better performance when compared with other widely used methods. Numéro de notice : A2015-029 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2318332 En ligne : https://doi.org/10.1109/TGRS.2014.2318332 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75110
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 1 (January 2015) . - pp 70 - 84[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015011 RAB Revue Centre de documentation En réserve L003 Disponible