Détail de l'auteur
Auteur Yuan Yang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automatic spatial–spectral feature selection for hyperspectral image via discriminative sparse multimodal learning / Qian Zhang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)
[article]
Titre : Automatic spatial–spectral feature selection for hyperspectral image via discriminative sparse multimodal learning Type de document : Article/Communication Auteurs : Qian Zhang, Auteur ; Yuan Tian, Auteur ; Yuan Yang, Auteur ; Chunhong Pan, Auteur Année de publication : 2015 Article en page(s) : pp 261 - 279 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage (cognition)
[Termes IGN] apprentissage dirigé
[Termes IGN] classification spectrale
[Termes IGN] image hyperspectrale
[Termes IGN] matrice
[Termes IGN] méthode des moindres carrés
[Termes IGN] programmation non linéaireRésumé : (Auteur) Spectral-spatial feature combination for hyperspectral image analysis has become an important research topic in hyperspectral remote sensing applications. A simple and straightforward way to integrate spectral-spatial features is to concatenate heterogeneous features into a long vector. Then, the dimensionality reduction techniques, i.e., feature selection, are applied before subsequent utilizations. However, such representation can introduce redundancy and noise. Moreover, traditional single-feature selection methods treat different features equally and ignore their complementary properties. As a result, the performance of subsequent tasks, i.e., classification, would drop down. In this paper, we propose a novel approach to integrate the spectral-spatial features based on the concatenating strategy, termed discriminative sparse multimodal learning for feature selection (DSML-FS). In the proposed method, joint structured sparsity regularizations are used to exploit the intrinsic data structure and relationships among different features. Discriminative least squares regression is applied to enlarge the distance between classes. Therefore, the weight matrix incorporating the information of feature wise and individual properties is automatically learned for spectral-spatial feature selection. We develop an alternative iterative algorithm to solve the nonlinear optimization problem in DSML-FS with global convergence. We systematically evaluate the proposed algorithm on three available hyperspectral data sets, and the encouraging experimental results demonstrate the effectiveness of DSML-FS. Numéro de notice : A2015-032 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2321277 En ligne : https://doi.org/10.1109/TGRS.2014.2321277 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75114
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 1 (January 2015) . - pp 261 - 279[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015011 RAB Revue Centre de documentation En réserve L003 Disponible