Détail de l'auteur
Auteur Nan Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Graph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
[article]
Titre : Graph-based block-level urban change detection using Sentinel-2 time series Type de document : Article/Communication Auteurs : Nan Wang, Auteur ; Wei Li, Auteur ; Ran Tao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112993 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multivariée
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] détection de changement
[Termes IGN] espace vert
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (auteur) Remote sensing technology has been frequently used to obtain information on changes in urban land cover because of its vast spatial coverage and timeliness of observation. Block-level change detection with high temporal resolution image data provides fine detail of urban changes, is suitable for urban management, and has gradually received widespread attention. High-dimensional features are required to express the heterogeneous structure of the blocks. High-dimensional high-frequency time series, namely, multivariate time series, are formed by arranging high-dimensional features chronologically. Classic change detection methods treat multivariate time series as univariate time series one by one. Few studies have analyzed the change in a multivariate time series by considering all variables as an entirety. Therefore, a graph-based segmentation for multivariate time series algorithm (MTS-GS) is proposed in this paper. Specifically, 1) we construct a similarity matrix to explore the changing patterns of multivariate time series for seasonal change, trend change, abrupt change, and noise disturbance; 2) a multivariate time series graph is defined based on the changing patterns; and 3) the corresponding graph segmentation algorithm is proposed in the paper to detect the abrupt and trend changes under noise and seasonal disturbances. Sentinel-2 images of the rapidly developing third-tier city of Luoyang, Henan province, China, are adopted to validate the algorithm. The F1-score in the spatial domain is 84.1%; the producer's and the user's accuracy in the temporal dimension are 81.8% and 80.1%, respectively. Seven change types are defined and extracted, showing the development pattern and the efficiency of land use in the city. Furthermore, the proposed MTS-GS can be used for pixel-level change detection and performs well under various time intervals and cloud covers. Numéro de notice : A2022-399 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112993 Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112993 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100699
in Remote sensing of environment > vol 274 (June 2022) . - n° 112993[article]An abundance characteristic-based independent component analysis for hyperspectral unmixing / Nan Wang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)
[article]
Titre : An abundance characteristic-based independent component analysis for hyperspectral unmixing Type de document : Article/Communication Auteurs : Nan Wang, Auteur ; Liangpei Zhang, Auteur ; Lifu Zhang, Auteur Année de publication : 2015 Article en page(s) : pp 416 - 428 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse en composantes indépendantes
[Termes IGN] image hyperspectraleRésumé : (Auteur) Independent component analysis (ICA) has been recently applied into hyperspectral unmixing as a result of its low computation time and its ability to perform without prior information. However, when applying ICA for hyperspectral unmixing, the independence assumption in the ICA model conflicts with the abundance sum-to-one constraint and the abundance nonnegative constraint in the linear mixture model, which affects the hyperspectral unmixing accuracy. In this paper, we consider an abundance matrix composed of Np-dimensional variables, and we propose a new hyperspectral unmixing approach with an abundance characteristic-based ICA model. Two characteristics of the abundance variables are explored, and the model is constructed by these characteristics. A corresponding gradient descent algorithm is also proposed to solve the proposed objective function. Both the synthetic and real experimental results demonstrate that the proposed method performs better than the other state-of-the-art methods in abundance and endmember extraction. Numéro de notice : A2015-034 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2322862 En ligne : https://doi.org/10.1109/TGRS.2014.2322862 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75116
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 1 (January 2015) . - pp 416 - 428[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015011 RAB Revue Centre de documentation En réserve L003 Disponible