Détail de l'auteur
Auteur Ali Soltani-Farani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatial-aware dictionary learning for hyperspectral image classification / Ali Soltani-Farani in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)
[article]
Titre : Spatial-aware dictionary learning for hyperspectral image classification Type de document : Article/Communication Auteurs : Ali Soltani-Farani, Auteur ; Hamid R. Rabiee, Auteur ; Seyyed Abbas Hosseini, Auteur Année de publication : 2015 Article en page(s) : pp 527 - 541 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] classification
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image hyperspectrale
[Termes IGN] limite de résolution radiométrique
[Termes IGN] prise en compte du contexte
[Termes IGN] voisinage (relation topologique)Résumé : (Auteur) This paper presents a structured dictionary-based model for hyperspectral data that incorporates both spectral and contextual characteristics of spectral samples. The idea is to partition the pixels of a hyperspectral image into a number of spatial neighborhoods called contextual groups and to model the pixels inside a group as members of a common subspace. That is, each pixel is represented using a linear combination of a few dictionary elements learned from the data, but since pixels inside a contextual group are often made up of the same materials, their linear combinations are constrained to use common elements from the dictionary. To this end, dictionary learning is carried out with a joint sparse regularizer to induce a common sparsity pattern in the sparse coefficients of a contextual group. The sparse coefficients are then used for classification using a linear support vector machine. Experimental results on a number of real hyperspectral images confirm the effectiveness of the proposed representation for hyperspectral image classification. Moreover, experiments with simulated multispectral data show that the proposed model is capable of finding representations that may effectively be used for classification of multispectral resolution samples. Numéro de notice : A2015-037 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2325067 En ligne : https://doi.org/10.1109/TGRS.2014.2325067 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75119
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 1 (January 2015) . - pp 527 - 541[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015011 RAB Revue Centre de documentation En réserve L003 Disponible