Détail de l'auteur
Auteur Krishna Mohan Buddhiraju |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])
[article]
Titre : Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification Type de document : Article/Communication Auteurs : Laxmi Narayana Eeti, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2021 Article en page(s) : pp 1820 - 1837 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] réseau neuronal profond
[Termes IGN] Rotation Forest classificationRésumé : (auteur) Decision tree-based Rotation Forest could generate satisfactory but lower classification accuracy for a given training sample set and image data, owing to the inherent disadvantages in decision trees, namely myopic, replication and fragmentation problem. To improve performance of Rotation Forest technique, we propose to utilize two-hidden-layered-feedforward neural network as base classifier instead of decision tree. We examine the classification performance of proposed model under two situations, namely when free network parameters are maintained the same across all ensemble components and otherwise. The proposed model, where each component is initialized with different pair of initial weights and bias, performs better than decision tree-based Rotation Forest on three different Hyperspectral sensor datasets – AVIRIS, ROSIS and Hyperion. Improvements in classification accuracy are above 2% and up to 3% depending upon dataset. Also, the proposed model achieves improvement in accuracy over Random Forest in the range 4.2–8.8%. Numéro de notice : A2021-581 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1678680 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/10106049.2019.1678680 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98193
in Geocarto international > vol 36 n° 16 [01/09/2021] . - pp 1820 - 1837[article]Anti-cross validation technique for constructing and boosting random subspace neural network ensembles for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 6 ([01/04/2021])
[article]
Titre : Anti-cross validation technique for constructing and boosting random subspace neural network ensembles for hyperspectral image classification Type de document : Article/Communication Auteurs : Laxmi Narayana Eeti, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2021 Article en page(s) : pp 676 - 697 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données multisources
[Termes IGN] image hyperspectrale
[Termes IGN] jeu de données
[Termes IGN] précision de la classificationRésumé : (Auteur) Achieving high classification accuracy is vital in reliable information extraction from images. Single classifiers and existing ensemble methods suffer from data dimensionality, insufficient ground truth information and lack in defining optimal feature selection. This article presents a novel idea for constructing component classifiers that boost random subspace ensemble method in improving its classification performance. It is achieved through sub-optimal training of component classifiers through interference in training process during validation error evaluation. The new approach allows to enforce different class errors among component classifiers, besides improving individual class accuracy. This article demonstrates effectiveness of the anti-cross validation approach using three classical hyperspectral Image (HSI) datasets with significant improvement in classification accuracies from 3 to 10% with the proposed approach. Numéro de notice : A2021-292 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1618926 Date de publication en ligne : 03/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1618926 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97338
in Geocarto international > vol 36 n° 6 [01/04/2021] . - pp 676 - 697[article]Textural classification of remotely sensed images using multiresolution techniques / Rizwan Ahmed Ansari in Geocarto international, vol 35 n° 14 ([15/10/2020])
[article]
Titre : Textural classification of remotely sensed images using multiresolution techniques Type de document : Article/Communication Auteurs : Rizwan Ahmed Ansari, Auteur ; Krishna Mohan Buddhiraju, Auteur ; Avik Bhattacharya, Auteur Année de publication : 2020 Article en page(s) : pp 1580 - 1602 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse multirésolution
[Termes IGN] analyse texturale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de contours
[Termes IGN] distance euclidienne
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image RVB
[Termes IGN] image satellite
[Termes IGN] texture d'image
[Termes IGN] transformation en ondelettesRésumé : (auteur) Multiresolution analysis (MRA) methods have been successfully used in texture analysis. Texture analysis is widely discussed in literature, but most of the methods which do not employ multiresolution strategy cannot exploit the fact that texture occurs at various spatial scales. This paper proposes a methodology to identify different classes in satellite images using texture features from newly developed multiresolution methods. The proposed method is tested on remotely sensed optical images and a Pauli RGB decomposed version of synthetic aperture radar image. The textural information is extracted at various scales and in different directions from curvelet and contourlet transforms. The results are compared with wavelet-based features. Accuracy assessment is performed and comparative analysis is carried out using minimum distance to mean, support vector machine and random forest classifiers. It is found that the proposed method shows better class discriminating power and classification capability as compared to existing wavelet-based method. Numéro de notice : A2020-618 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581263 Date de publication en ligne : 15/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95994
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1580 - 1602[article]Supervised change detection in satellite imagery using super pixels and relevance feedback / Surender Varma Gadhiraju in Geomatica, vol 68 n° 1 (March 2014)
[article]
Titre : Supervised change detection in satellite imagery using super pixels and relevance feedback Type de document : Article/Communication Auteurs : Surender Varma Gadhiraju, Auteur ; Hichem Sahbi, Auteur ; Biplab Banerjee, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2014 Article en page(s) : pp 5 - 14 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] classificateur paramétrique
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] données de terrain
[Termes IGN] image multitemporelle
[Termes IGN] pertinence
[Termes IGN] pixelRésumé : (auteur) Les données provenant des satellites de télédétection offrent la possibilité de recueillir de l’information au sujet des terres selon diverses résolutions et ont été largement utilisées dans le cadre des études de détection de changements. Un grand nombre de méthodologies et de techniques de détection de changements utilisant les données de télédétection ont été développées et de nouvelles techniques font encore leur apparition. Dans le présent article, nous proposons une nouvelle approche supervisée de détection de changements qui utilise une Machine à vecteurs de support (SVM) et des super pixels. Dans la formulation de la détection de changements, les SVM sont modélisés comme un classificateur binaire afin d’obtenir l’extrant final « Changement » et « Pas de changement » comme information. Un mécanisme de contrôle de pertinence est également inclus dans la stratégie de détection de changements de façon à ce qu’elle s’adapte aux préférences de l’utilisateur. La réalité de terrain et le contrôle de pertinence sont tous deux collectés en utilisant les IUG développés. Une comparaison de l’approche proposée avec trois autres techniques de détection de changements est effectuée au moyen des expériences réalisées sur trois jeux de données multitemporelles. On observe que la stratégie de détection de changements supervisée et axée sur les super pixels donne des résultats supérieurs comparativement aux approches traditionnelles de détection de changements. On observe également que l’utilisation du contrôle de pertinence affine les résultats de la détection de changements et agit comme un processus souhaitable de suivi de la détection de changements. Numéro de notice : A2014-666 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5623/cig2014-001 En ligne : https://doi.org/10.5623/cig2014-001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75354
in Geomatica > vol 68 n° 1 (March 2014) . - pp 5 - 14[article]